Answer:
The correct answer is 5.447 × 10⁻⁵ vacancies per atom.
Explanation:
Based on the given question, the at 750 degree C the number of vacancies or Nv is 2.8 × 10²⁴ m⁻³. The density of the metal is 5.60 g/cm³ or 5.60 × 10⁶ g/m³. The atomic weight of the metal given is 65.6 gram per mole. In order to determine the fraction of vacancies, the formula to be used is,
Fv = Nv/N------ (i)
Here Nv is the number of vacancies and N is the number of atomic sites per unit volume. To find N, the formula to be used is,
N = NA×P/A, here NA is the Avogadro's number, which is equivalent to 6.022 × 10²³ atoms per mol, P is the density and A is the atomic weight. Now putting the values we get,
N = 6.022 × 10²³ atoms/mol × 5.60 × 10⁶ g/m³ / 65.6 g/mol
N = 5.14073 × 10²⁸ atoms/m³
Now putting the values of Nv and N in the equation (i) we get,
Fv = 2.8 × 10²⁴ m⁻³ / 5.14073 × 10²⁸ atoms/m^3
Fv = 5.44669 × 10⁻⁵ vacancies per atom or 5.447 × 10⁻⁵ vacancies/atom.
Each orbital must contain a single electron before any orbital contains two electrons.
Answer:
a minimum of <em>1</em><em>0</em><em>,</em><em>0</em><em>0</em><em>0</em><em> </em>years
Answer:
0.147 mol
Explanation:
Step 1: Calculate the volumetric concentration (Cv)
We will use the following expression.
Cv = Cg × ρ
Cv = 98.0 g%g × 1.84 g/mL = 180 g%mL
Step 2: Calculate the molarity of sulfuric acid
We will use the following expression.
M = mass solute / molar mass solute × liters of solution
M = 180 g / 98.08 g/mol × 0.100 L = 18.4 M
Step 3: Calculate the moles of solute in 8.00 mL of solution
8.00 × 10⁻³ L × 18.4 mol/L = 0.147 mol
Pick up plastic, reduce waste, reduce pollutants