Given:
volume of 0.08 m³
density of 7,840 kg/m³
Required:
force of gravity
Solution:
Find the mass using density
equation.
D = M/V
M = DV
M = (7,840 kg/m³)(0.08 m³)
M = 627.2kg
F = Mg
F = (627.2kg)(9.8m/s2)
F = 6147N
2 H₂O₂ --> 2 H₂ + 2 O₂
2 moles H₂O₂ ------> 2 moles O₂
8 moles H₂O₂ ------> ?
moles O₂ = 8 x 2 / 2
moles O₂ = 16 / 2
= 8 moles
Answer C
hope this helps!
Well, a compound has a total charge of 0. So, it's electrically neutral. Since the X is 3+ and the Y is 3- they add to 0. Meaning no subscripts are necessary. Why don't you try a different combo?
Like:
A^3 and B^1-, to get a 3- charge you need 3xB^1- so the formula is AB3
Does this help?
Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC