Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
Answer:
acceleration 8 km/h/s south
Explanation:
First of all, let's remind that a vector quantity is a quantity which has both a magnitude and a direction.
Based on this definition, we can already rule out the following two choices:
distance: 40 km
speed: 40 km/h
Since they only have magnitude, they are not vectors.
Then, the following option:
velocity: 5 km/h north
is wrong, because the car is moving south, not north.
So, the correct choice is
acceleration 8 km/h/s south
In fact, the acceleration can be calculated as

where
v = 40 km/h is the final velocity
u = 0 is the initial velocity
t = 5 s is the time
Substituting,

And since the sign is positive, the direction is the same as the velocity (south).
Answer:
The wind would still blow, but it would curve and spin in the opposite direction.
Explanation:
Answer:
A₁/A₂ = 0.44
Explanation:
The emissive power of the bulb is given by the formula:
P = σεAT⁴
where,
P = Emissive Power
σ = Stefan-Boltzman constant
ε = Emissivity
A = Surface Area
T = Absolute Temperature of Surface
<u>FOR BULB 1:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₁T₁⁴ ----------- equation 1
where,
A₁ = Surface Area of Bulb 1
T₁ = Temperature of Bulb 1 = 3000 k
<u>FOR BULB 2:</u>
Since, emissivity and emissive power are constant.
Therefore,
P = σεA₂T₂⁴ ----------- equation 2
where,
A₂ = Surface Area of Bulb 2
T₂ = Temperature of Bulb 1 = 2000 k
Dividing equation 1 by equation 2, we get:
P/P = σεA₁T₁⁴/σεA₂T₂⁴
1 = A₁(3000)²/A₂(2000)²
A₁/A₂ = (2000)²/(3000)²
<u>A₁/A₂ = 0.44</u>