ONLY if ur asking for the 3 states of matter it is solid liquid and gas
☁️ Answer ☁️
Internal radiation exposure hazards result from radioactive material that gets inside the body when you breathe it
Hope it helps.
Have a nice day hyung/noona!~  ̄▽ ̄❤️
Answer:
the runner's average kinetic energy during the run is 476.96 J.
Explanation:
Given;
mass of the runner, m = 85 kg
distance covered by the runner, d = 42.2 km = 42,200 m
time to complete the race, t = 3 hours 30 mins = (3 x 3600s) + (30 x 60s)
= 12,600 s
The speed of the runner, v = d/t
v = 42,200 / 12,600
v = 3.35 m/s
The runner's average kinetic energy during the run is calculated as;
K.E = ¹/₂mv²
K.E = ¹/₂ × 85 × (3.35)²
K.E = 476.96 J
Therefore, the runner's average kinetic energy during the run is 476.96 J.
The maximum speed of Tim is 16.95 m/s.
The given parameters:
- Mass of the rope, m = 71 kg
- Tension on the rope, T = 220 N
- Coefficient of kinetic friction, = 0.1
- Time of motion, t = 8 s
<h3>What is Newton's second law of motion?</h3>
- Newton's second law of motion states that, the force applied to an object is directly proportional to the product of mass and acceleration of the object.
The net force on Tim is calculated by applying Newton's second law of motion as follows;

Thus, the maximum speed of Tim is 16.95 m/s.
Learn more about net horizontal force here: brainly.com/question/21684583
Average acceleration is
Change in Velocity/change in time
So you could then do Vf-Vi/Tf-Ti
Which would look like 13m/s-6m/s / 1s-0s
Which then is 7m/s/1s which means the acceleration is 7m/s^2