Momentum = mass x velocity
12 = 4 x v | ÷ both sides by 4
12 ÷ 4 =v
v= 3 m/s
Multiply m/s by 12 seconds to get meters by itself. 15(12)=180 m
The answer is C. It would look similar to the graph for KNO3
Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer:
Explanation:
volume of water being lifted
= π r² h , where r is radius of cylinder and h is height of cylinder
= 3.14 x5² x 10
= 785 m³
mass of water = 785 x 10³ kg
mass of this much of water is lifted so that its centre of mass is lifted by height
10 / 2 = 5m .
So work done = mgh , m is mass of water , h is displacement of centre of mass and g is acceleration due to gravity
= 785 x 10³ x 9.8 x 5
= 38.465 x 10⁶ J