1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yarga [219]
3 years ago
15

Water enters the constant 130-mm inside-diameter tubes of a boiler at 7 MPa and 65°C and leaves the tubes at 6 MPa and 450°C wit

h a velocity of 72 m/s. Calculate the velocity of the water at the tube inlet and the inlet volume flow rate. The specific volumes of water at the inlet and exit are 0.001017 m3/kg and 0.05217 m3/kg.
Physics
1 answer:
snow_lady [41]3 years ago
4 0

The inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

Explanation:

When water entering the tube of constant diameter flows through the tube, it exhibits continuity of mass in the hydrostatics. So the mass of water moving from the inlet to the outlet tend to be same, but the velocity may differ.

As per mass flow equality which states that the rate of flow of mass in the inlet is equal to the product of area of the tube with the velocity of the water and the density of the tube.

Since, the inlet volume flow is measured as the product of velocity with the area.

Inlet volume flow=Inlet velocity*Area*time

And the mass flow rate is  

Mass flow rate in the inlet=density*area*inlet velocity*time

Mass flow rate in the outlet=density*area*outlet velocity*time

Since, the time and area is constant, the inlet and outlet will be same as

(Mass inlet)/(density*inlet velocity)=Area*Time

(Mass outlet)/(density*outlet velocity)=Area*Time

As the ratio of mass to density is termed as specific volume, then  

(Specific volume inlet)/(Inlet velocity)=(Specific volume outlet)/(Outlet velocity)

Inlet velocity=  (Specific volume inlet)/(Specific volume outlet)*Outlet velocity

As, the specific volume of water at inlet is 0.001017 m³/kg and at outlet is 0.05217 m³/kg and the outlet velocity is given as 72 m/s, the inlet velocity

is

Inlet velocity = \frac{0.001017}{0.05217}*72 =1.4035 m/s

So, the inlet velocity is 1.4035 m/s.

Then the inlet volume will be

Inlet volume = inlet velocity*area of circle=\pi  r^{2}*inlet velocity

As the diameter of tube is 130 mm, then the radius is 65 mm and inlet velocity is 1.4 m/s

Inlet volume = 1.4*3.14*65*65*10^{-6} =0.019 \frac{m^{3} }{s}

So, the inlet volume is 0.019 m³/s.

Thus, the inlet velocity is 1.4 m/s and inlet volume is 0.019 m³/s.

You might be interested in
Explain why frog will not look green under the red light?
IrinaVladis [17]
A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.

If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.
8 0
3 years ago
About how much of the United States' electricity is produced by nuclear reactors?​
Firdavs [7]

Answer:

19% total electrical output

Explanation:

3 0
2 years ago
Read 2 more answers
A stretched string is observed to have four equal segments in a standing wave driven at a frequency of 480 hz. what driving freq
Korvikt [17]

600Hz is the driving frequency needed to create a standing wave with five equal segments.

To find the answer, we have to know about the fundamental frequency.

<h3>How to find the driving frequency?</h3>
  • The following expression can be used to relate the fundamental frequency to the driving frequency;

                                        f(n) = n * f (1)

where, f(1) denotes the fundamental frequency and the driving frequency f(n).

  • The standing wave has four equal segments, hence with n=4 and f(n)=4, we may calculate the fundamental frequency.

                                          f(4) = 4× f (1)

                                          480 = 4× f(1)

                                         f(1) = 480/4 =120Hz.

So, 120Hz is the fundamental frequency.

  • To determine the driving frequency necessary to create a standing wave with five equally spaced peaks?
  • For, n = 5,

                      f(n) = n 120Hz,

                      f(5) = 5×120Hz=600Hz.

Consequently, 600Hz is the driving frequency needed to create a standing wave with five equal segments.

Learn more about the fundamental frequency here:

brainly.com/question/2288944

#SPJ4

8 0
1 year ago
Racing greyhounds are capable of rounding corners at very high speeds. A typical greyhound track has turns that are 45 m diamete
Readme [11.4K]

Answer:

In m/s^2:

a=11.3778 m/s^2

In units of g:

a=1.161 g

Explanation:

Since the racing greyhounds are capable of rounding corners at very high speed so we are going use the following formula of acceleration for circular paths.

a=\frac{v^2}{r}

where:

v is the speed

r is the radius

Now,

a=\frac{16^2}{45/2}\\ a=11.3778 m/s^2

In g units:

a=\frac{11.3778\ g}{9.8}\\ a=1.161\ g

7 0
3 years ago
The gold foil experiment led to the conclusion that each atom in the foil was composed mostly of empty space because most alpha
katovenus [111]

Answer:

(1) passed through the foil

Explanation:

Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.

  • When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
  • While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
  • And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these  conclusions were made based upon the spot of glow on the fluorescent screen.

5 0
3 years ago
Read 2 more answers
Other questions:
  • If a proton were released from rest at the sphere's surface, what would be its speed far from the sphere?
    14·2 answers
  • Which statement is most likely correct?
    8·2 answers
  • An expanding gas does 153 J of work on its surroundings at a constant pressure of 1.01 atm. If the gas initially occupied 68.0 m
    9·1 answer
  • How do you make an electromagnet
    15·2 answers
  • Water at 20oC flows through a long elliptical duct 30 cm wide and 22 cm high. What average velocity, in m/s, would cause the wei
    12·2 answers
  • As you go farther down the periodic table, the atoms get _______ and more ________.
    13·2 answers
  • Which of the graphs describes the motion of a person who first rode her bicycle at constant speed and then rested?
    10·1 answer
  • the speed of light in a certain medium is 0.6c. find critical angle , if the index of refraction is 1.67​
    7·1 answer
  • Two objects of masses m1 = 0.56 kg and m2 = 0.88 kg are placed on a horizontal
    13·1 answer
  • You place a box weighing 242.4 N on an in- clined plane that makes a 37.2° angle with the horizontal. Compute the component of t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!