1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
10

Fill in the missing numbers to complete the pattern 615,605,595

Mathematics
1 answer:
Sophie [7]3 years ago
7 0

We are given pattern 615,605,595.

Let us check differences of second term - first term and

Third term - second term

Second term - first term = 605 - 615 = -10.

Third term - second term = 595 - 605 = -10.

So, each time 10 is being subtracted from previous term.

So, the sequnace would be

<h3>615, 605, 595, <u>585</u>, <u>575</u>, <u>565.</u></h3>
You might be interested in
49x^2=-21x-2 quadratic functions
lara [203]

Answer: 49x^2=-21x-2 quadratic functions -1/7and -2/7    



Step-by-step explanation:

Quadratic function:

In elementary algebra, the quadratic formula is a formula that provides the solution to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring, completing the square, graphing and others.

Move terms to the left side

49x^{2}  =-21x-2

49x^{2}  -(-21x-2) =0

 Distribute

49x^{2}  -(-21x-2) =0

49x^{2}+21x+2=0

Use the quadratic formula



 x=(-b±√b^{2}  -4ac  ) / 2a

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

 49x^{2}+21x+2=0

let, a=49

b=21

c=2

 Replace with values in this equation

X=(-b±√b^{2}  -4ac  ) / 2a

Simplify

Evaluate the exponent

Multiply the numbers

Subtract the numbers

Evaluate the square root

Multiply the numbers

x=(-21±7) /98

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.Separate

x=(-21+7) /98

x=(-21-7) /98

Solve

Rearrange and isolate the variable to find each solution

x=-1/7

x=-2/7



                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Learn more about area here https://brainly.in/question/5597925

#SPJ9

                 

   



   


                                                                                                                                                                                                   







3 0
2 years ago
URGENT<br>please find the mean and standard deviation too​ (number 6)
adell [148]

Answer:To calculate the standard deviation of those numbers:

1.Work out the Mean (the simple average of the numbers)

2.Then for each number: subtract the Mean and square the result.

3.Then work out the mean of those squared differences.

4.Take the square root of that and we are done!

Step-by-step explanation:

5 0
3 years ago
3x^2+20x+12<br> pls show work ;-;
RoseWind [281]

Answer:

3 {x}^{2}  + 20x + 12 \\ 3 {x}^{2}  + 18x + 2x + 12 \\ 3x(x + 6) + 2(x + 6) \\( 3x + 2)(x + 6)

5 0
2 years ago
Find the rate of change for the interval [5,15]
Aleks04 [339]
Left side goes up 5 right side goes up 7

The rate of change between 5,15 is 10
3 0
3 years ago
4TH TIME ASKING THIS!!! Please help me! Someone pleaseeee. I need the correct answers. I don’t want to fail
Alexeev081 [22]

Answer:

The functions are inverses; f(g(x)) = x ⇒ answer D

h^{-1}(x)=\sqrt{\frac{x+1}{3}} ⇒ answer D

Step-by-step explanation:

* <em>Lets explain how to find the inverse of a function</em>

- Let f(x) = y

- Exchange x and y

- Solve to find the new y

- The new y = f^{-1}(x)

* <em>Lets use these steps to solve the problems</em>

∵ f(x)=\sqrt{x-3}

∵ f(x) = y

∴ y=\sqrt{x-3}

- Exchange x and y

∴ x=\sqrt{y-3}

- Square the two sides

∴ x² = y - 3

- Add 3 to both sides

∴ x² + 3 = y

- Change y by f^{-1}(x)

∴ f^{-1}(x)=x^{2}+3

∵ g(x) = x² + 3

∴ f^{-1}(x)=g(x)

∴ <u><em>The functions are inverses to each other</em></u>

* <em>Now lets find f(g(x))</em>

- To find f(g(x)) substitute x in f(x) by g(x)

∵ f(x)=\sqrt{x-3}

∵ g(x) = x² + 3

∴ f(g(x))=\sqrt{(x^{2}+3)-3}=\sqrt{x^{2}+3-3}=\sqrt{x^{2}}=x

∴ <u><em>f(g(x)) = x</em></u>

∴ The functions are inverses; f(g(x)) = x

* <em>Lets find the inverse of h(x)</em>

∵ h(x) = 3x² - 1 where x ≥ 0

- Let h(x) = y

∴ y = 3x² - 1

- Exchange x and y

∴ x = 3y² - 1

- Add 1 to both sides

∴ x + 1 = 3y²

- Divide both sides by 3

∴ \frac{x + 1}{3}=y^{2}

- Take √ for both sides

∴ ± \sqrt{\frac{x+1}{3}}=y

∵ x ≥ 0

∴ We will chose the positive value of the square root

∴ \sqrt{\frac{x+1}{3}}=y

- replace y by h^{-1}(x)

∴ h^{-1}(x)=\sqrt{\frac{x+1}{3}}

4 0
3 years ago
Other questions:
  • What is the factorization??
    13·1 answer
  • Find percentage of each quantity. 40% of an hour
    8·1 answer
  • HELP ASAP
    8·2 answers
  • A bag contains 4 red, 5 blue, and 3 black marbles. Find the probability that if you pick 3 marbles
    12·1 answer
  • Please help me with this !
    8·1 answer
  • Write a real world problem that can be modeled by the equation 1.25=0.75x+50
    11·1 answer
  • ∆ABC ~ ∆WXY. What is the value of x? (show work)
    15·1 answer
  • Name all things on the list that are renewable or nonrenewable
    10·2 answers
  • Solve the x to the nearest tenth​
    13·1 answer
  • You take a math quiz that has 25 regular points and 5 bonus points. You get a score of 20, which includes 2 bonus points. Which
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!