Boiling water is a common method used to sterilize water that may be contaminated. subjecting microbes to such high temperatures is an example of a(n) microbicidal technique.
A substance that eliminates microorganisms (such as bacteria) is known as microbicide and the techniques that involve destruction of microbes are known as microbicidal techniques.
The pathogen biofilm was effectively destroyed by the combined microbicidal effects of hot water (50, 60, or 70 °C) and 2% citric acid. It was discovered that the combination of hot water and citric acid caused sub-lethally harmed cells.
A fairly easy way to disinfect water is to boil it. The majority of dangerous organisms, notably viruses and bacteria that cause waterborne infections, are killed when water is heated to a high temperature of 100°C. The water must boil for at least 20 minutes in order to be most effective.
Hence, water that may be polluted is frequently sterilized by boiling. Using such high temperatures to kill germs is an example of a microbicidal method.
Learn more about Sterilization techniques here brainly.com/question/13062351
#SPJ4
Answer: Noise above 70 dB can cause hearing damage
Explanation:
Answer:
a) m = 10 and b) λ = 3.119 10⁻⁷ m
Explanation:
In the diffraction experiments the maximums appear due to the interference phenomenon modulated by the envelope of the diffraction phenomenon, for which to find the number of lines within the maximum diffraction center we must relate the equations of the two phenomena.
Interference equation d sin θ = m λ
Diffraction equation a sin θ = n λ
Where d is the width between slits (d = 0.2 mm), a is the width of each slit (a = 0.02 mm). θ is the angle, λ the wavelength, m and n are an integer.
Let's find the relationship of these two equations
d sin θ / a sin θ = m Lam / n Lam
The first maximum diffraction (envelope) occurs for n = 1, let's simplify
d / a = m
Let's calculate
m = 0.2 / 0.02
m = 10
This means that 10 interference lines appear within the first maximum diffraction.
b) let's use the interference equation, remember that the angles must be given in radians
θ = 0.17 ° (π rad / 180 °) = 2.97 10⁻³ rad
d sin θ = m λ
λ = d sin θ / m
λ = 0.2 10⁻³ sin (2.97 10⁻³) / 2
λ = 3.119 10⁻⁷ m
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.