Answer:
THE ANSWER TERMS ARE DEFINED BLOW:-
Explanation:
MOMENTUM- IT IS THE ABILITY TO INCREASE OR DEVELOP CONSTANT FORCE.
KINETIC ENERGY:- IT IS THE ENERGY THAT A PRTICLE POSSES WHEN IT IS ACTUALLY IN MOTION.
POTENTIAL ENERGY:- IT IS THE ENERGY THAT A PARTICLE POSSES WHEN IT ACTUALLY IS IN RESTING STATE.
IN THIS ACIVITY THE SNOWBOARDER IS IN THE MOTION STATE THEREFORE HE POSSES KINETIC ENERGY AND TO MAINTAIN THAT KINEITC ENERG FOR A PERIOD OF TIME,MOMENTUM PLAYS IT'S ROLE.

If he wants to increase power, force must increase and decrease time.
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Explanation:
Yes, in order to determine whether two geometric figures are identical or not we tend to rotate one of the figure clockwise or anti clock wise mentally. However, in clockwise rotation larger the angel more will be the time taken for instance, it will take longer to rotate 120° than to rotate 40°. Whereas in anti clockwise ration it will be vice versa.
Answer:
1 / 2 m v^2 = L m g (1 - cos θ)
This is the KE due to the pendulum falling from a 25 deg displacement
v^2 = 2 L g (1 - cos 25) = 2 * 2 * 9.8 (1 - .906) = 3.67 m^2/s^2
v = 1.92 m/s this is the speed due to an initial displacement of 25 deg
Its speed at the bottom would then be
1.92 + 1.2 = 3.12 m/s since it gains 1.92 m/s from its initial displacement