Answer is: the pressure in a vessel is 1.48 atm.
V(Cl₂) = 22.4 L; pressure of chlorine gas.
n(Cl₂) = 1.50 mol; amount of chlorine gas.
T = 0.00°C = 273.15 K; temperature.
a = 6.49 L²·atm/mol²; the constant a provides a correction for the intermolecular forces.
b = 0.0562 L/mol; value is the volume of one mole of the chlorine gas.
R = 0.08206 L·atm/mol·K, universal gas constant.
Van de Waals equation: (P + an² / V²)(V - nb) = nRT.
(P + 6.49 L²·atm/mol² · (1.5 mol)² / (22.4 L)²) · (22.4 L - 1.5 mol·0.0562 L/mol) = 1.5 mol · 0.08206 L·atm/mol·K · 273.15 K.
(P + 6.49 L²·atm/mol² · (1.5 mol)² / (22.4 L)²) = (1.5 mol · 0.08206 L·atm/mol·K · 273.15 K) ÷ (22.4 L - 1.5 mol · 0.0562 L/mol).
P + 0.029 atm = 33.62 L·atm ÷ 22.31 L.
P = 1.507 atm - 0.029 atm.
P = 1.48 atm; the pressure.
Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Answer:
See below ↓↓↓
Explanation:
Helminths = 1 Most Difficult
Fungi = 2 Moderately Difficult [Option not given, but 2 is right answer]
Bacteria = 3 Least Difficult
Is there something else that goes along with this?
Answer: 2.75%
Explanation:
![pH=-log [H+]](https://tex.z-dn.net/?f=pH%3D-log%20%5BH%2B%5D)
![3.26 = -log [H+]](https://tex.z-dn.net/?f=3.26%20%3D%20-log%20%5BH%2B%5D)
![[H+] = 5.495\times 10^{-4} M](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%205.495%5Ctimes%2010%5E%7B-4%7D%20M)

initial 0.020 0 0
eqm 0.020 -x x x
![K_a=\frac{[H+][A-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%2B%5D%5BA-%5D%7D%7B%5BHA%5D%7D)
![K_a=\frac{[x][x]}{[0.020-x]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5Bx%5D%5Bx%5D%7D%7B%5B0.020-x%5D%7D)

![K_a=\frac{[5.495\times 10^{-4}]^2}{[0.020-5.495\times 10^{-4}]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5B5.495%5Ctimes%2010%5E%7B-4%7D%5D%5E2%7D%7B%5B0.020-5.495%5Ctimes%2010%5E%7B-4%7D%5D%7D)

percent dissociation = ![\frac{[H^+_eqm]}{[Acid_{initial}]}\times 100](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B_eqm%5D%7D%7B%5BAcid_%7Binitial%7D%5D%7D%5Ctimes%20100)
percent dissociation=
Thus percent dissociation= 2.75 %