The correct answer is C) frequency.
In fact, the frequency is the number of wave crests (or pulses) per seconds. In our problem, the machine that produces the wave pulses two times per second, so this is exactly the frequency of the compression wave.
Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Gas or fog in the air due to evaporation.
please vote my answer branliest. Thanks.
Answer: Oceanic crust, the outermost layer of Earth's lithosphere that is found under ... Sort out the facts and see how deep your knowledge goes in this quiz of the world's oceans. ... They commonly are thin (only about 10 cm [4 inches] thick) and cover a ... km (85 square miles) of seafloor to an average depth of 70 metres (230 feet).
Explanation:
Average speed = (total distance) / (time to cover the distance)
We know:
Average speed = 65 km/hr
Total distance = 1,000 km
Time to cover it = (Driving Time) + 4 hours.
so we can write:
65 km/hr = (1,000 km) / (Driving Time + 4hr)
(I'm going to start calling the driving time 'DT'.
Notice that DT is a number with the units of 'hours'.)
Multiply each side by (DT + 4hr)
(65 km/hr) (DT + 4hr) = 1,000 km
Eliminate parentheses on the left side:
(65·DT km + 260 km) = 1,000 km
Subtract 260km from each side:
65·DT km = 740 km
Divide each side by 65 :
DT = 11.38 hours .
DT (Driving Time) is the time you spent actually driving.
You had to cover the complete 1,000 km in that time.
So while you were driving, you had to do it at a speed of
1,000 km / 11.38 hrs = 87.8 km/hr .
__________________________________________
As long as we're already totally bored by this question,
let's work on it some more, and check my answer:
... Driving for 11.38 hours at a speed of 87.8 km/hr, you cover
(11.38 hr) x (87.8 km/hr) = 999.164 km (close enough to 1,000) .
So far, so good. The distance is taken care of.
With the 4-hour stop, the total trip takes 4 more hours = 15.38 hours.
So the average speed is
(1,000 km) / (15.38 hr) = 65.02 km/hr
Close enough to 65 km/hr. yay !