Before we find impulse, we need to find the initial and final momentum of the ball.
To find the momentum of the ball before it hit the floor, we need to figure out its final velocity using kinematics.
Values we know:
acceleration(a) - 9.81m/s^2 [down]
initial velocity(vi) - 0m/s
distance(d) - 1.25m [down]
This equation can be used to find final velocity:
Vf^2 = Vi^2 + 2ad
Vf^2 = (0)^2 + (2)(-9.81)(-1.25)
Vf^2 = 24.525
Vf = 4.95m/s [down]
Now we need to find the velocity the ball leaves the floor at using the same kinematics concept.
What we know:
a = 9.81m/s^2 [down]
d = 0.600m [up]
vf = 0m/s
Vf^2 = Vi^2 + 2ad
0^2 = Vi^2 + 2(-9.81)(0.6)
0 = Vi^2 + -11.772
Vi^2 = 11.772
Vi = 3.43m/s [up]
Now to find impulse given to the ball by the floor we find the change in momentum.
Impulse = Momentum final - momentum initial
Impulse = (0.120)(3.43) - (0.120)(-4.95)
Impulse = 1.01kgm/s [up]
Answer:
(a) E= 3.36×10−2 V +( 3.30×10−4 V/s3 )t3
(b) 
Explanation:
Given:
- radius if the coil,

- no. of turns in the coil,

- variation of the magnetic field in the coil,

- resistor connected to the coil,

(a)
we know, according to Faraday's Law:

where:
change in associated magnetic flux

where:
A= area enclosed by the coil
Here




So, emf:
![emf= 520\times \frac{d}{dt} [((1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)\times 0.0049]](https://tex.z-dn.net/?f=emf%3D%20520%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5B%28%281.2%5Ctimes%2010%5E%7B-2%7D%29t%2B%283.45%5Ctimes%2010%5E%7B-5%7D%29t%5E4%29%5Ctimes%200.0049%5D)
![emf= 520\times 0.0049\times \frac{d}{dt} [(1.2\times 10^{-2})t+(3.45\times 10^{-5})t^4)]](https://tex.z-dn.net/?f=emf%3D%20520%5Ctimes%200.0049%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5B%281.2%5Ctimes%2010%5E%7B-2%7D%29t%2B%283.45%5Ctimes%2010%5E%7B-5%7D%29t%5E4%29%5D)
![emf= 2.548\times [0.012+(13.8\times 10^{-5})t^3)]](https://tex.z-dn.net/?f=emf%3D%202.548%5Ctimes%20%5B0.012%2B%2813.8%5Ctimes%2010%5E%7B-5%7D%29t%5E3%29%5D)

(b)
Given:

Now, emf at given time:

∴Current



Answer:Gliding
Explanation:
Because it’s an ball and socket joint
Answer:

Explanation:
Given that,
Initial velocity, u = -5 m/s
Final velocity, v = -22 m/s
Time, t = 3s
We need to find the acceleration of the car. The formula of it is given by :
Acceleration,

So, the acceleration of the car is
.
Answer:an inspirational statement of an idealistic emotional future
Explanation:
I don't know if it's right tho