1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
5

Which of the following is not an example of a biological polymer?

Chemistry
1 answer:
Blababa [14]3 years ago
6 0

Answer

Omega-3 fatty acid

Explanation:

The monomers are small units or molecules which join with each other end in a huge to end and give rise to the polymers.

DNA and albumin:

If we talk about albumin it is a protein which is present in eggs. All proteins are made up of monomers of amino acids. Similarly, DNA is also a polymer because it is made up hundreds and thousands of small monomeric units called nucleotides.

glycogen:

It is also a biological polymer where several monomer units of glucose  are joined together through alpha acetal linkages.

Omega-3 fatty acid:

It is not a polymer. Its a group of fatty acids that contain  a double bond at carbon of 3rd position from one end of the carbon chain that was initiated from methyl group and contains one carboxyl group located at the other molecular end. For example: Alpha-Linelenic acid.

Therefore, Omega-3 fatty acid is the right option.

Hope it helps!

You might be interested in
suppose that an ionic compound m represents a metal that could form more than one type of ion. in the formula MO the charge of t
blsea [12.9K]

Answer:

 

Explanation:

7 0
3 years ago
Coal power plants burn large amounts of coal, c(s), in an o 2 ​ (g) atmosphere to generate electricity. the chemical reaction re
charle [14.2K]
Answer is: volume of carbon dioxide is 1,84·10⁸ l.
Chemical reaction: C + O₂ → CO₂.
m(C) = 100 t · 1000 kg/t = 100000 kg 
m(C) = 100000 kg · 1000 g/kg = 10⁸ g.
n(C) = m(C) ÷ M(C).
n(C) = 10⁸ g ÷ 12 g/mol.
n(C) = 8,33·10⁶ mol.
From chemical reaction: n(C) . n(CO₂) = 1 : 1.
n(CO₂) = 8,33·10⁶ mol.
m(CO₂) = 8,33·10⁶ mol · 44 g/mol.
m(CO₂)  = 3,66·10⁸ = 3,66·10⁵ kg.
V(CO₂) = 3,66·10⁵ kg ÷ 1,98 kg/m³ = 1,84·10⁵ m³.
V(CO₂) = 1,84·10⁵ m³ · 1000 l/m³ = 1,84·10⁸ l.

6 0
3 years ago
A mixture of 0.10 mol of NO, 0.050 mol of H2, and 0.10 mol of H2O is placed in a 1.0-L vessel at 300 K. The following equilibriu
tatyana61 [14]

Answer:

[H2] =    0.012 M

[N2] =    0.019 M

[H2O] =  0.057 M

Explanation:

The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.

                  2NO(g)         +    2H2(g)    ⇒        N2(g)      +         2H2O(g)

i  mol            0.10                   0.050                                             0.10

c mol            -0.038                -0.038                +0019                +0.038                                                

e mol            0.062                 0.012                  00.019               0.057

Since the volume of the vessel is 1.0 L, the concentrations in molarity are:

[NO] =   0.062 M

[H2] =    0.012 M

[N2] =    0.019 M

[H2O] =  0.057 M

5 0
3 years ago
As the mass of a star increases the lifespan of the star
ira [324]

Answer:

decreases

Explanation:

4 0
3 years ago
For the decomposition of A to B and C, A(s)⇌B(g)+C(g) how will the reaction respond to each of the following changes at equilibr
lys-0071 [83]

Answer:

a. No change.    

b. The equilibrium will shift to the right.

c. No change

d. No change

e.  The equilibrium will shift to the left

f.  The equilibrium will shift to the right      

Explanation:

We are going to solve this question by making use of Le Chatelier´s principle which states that any change in a system at equilibrium will react in such a way as to attain qeuilibrium again by changing the equilibrium concentrations attaining   Keq  again.

The equilibrium constant  for  A(s)⇌B(g)+C(g)  

Keq = Kp = pB x pC

where K is the equilibrium constant ( Kp in this case ) and pB and pC are the partial pressures of the gases. ( Note A is not in the expression since it is a solid )

We also use  Q which has the same form as Kp but denotes the system is not at equilibrium:

Q = p´B x p´C where pB´ and pC´ are the pressures not at equilibrium.

a.  double the concentrations of Q which has the same form as Kp but : products and then double the container volume

Effectively we have not change the equilibrium pressures since we know pressure is inversely proportional to volume.

Initially the system will decrease the partial pressures of B and C by a half:

Q = pB´x pC´     ( where pB´and pC´are the changed pressures )

Q = (2 pB ) x (2 pC) = 4 (pB x PC) = 4 Kp  ⇒ Kp = Q/4

But then when we double the volume ,the sistem will react to  double the pressures of A and B. Therefore there is no change.

b.  double the container volume

From part a we know the system will double the pressures of B and C by shifting to the right ( product ) side since the change  reduced the pressures by a half :

Q =  pB´x pC´  = (  1/2 pB ) x ( 1/2 pC )  =  1/4 pB x pC  = 1/4 Kp

c. add more A

There is no change in the partial pressures of B and C since the solid A does not influence the value of kp

d. doubling the  concentration of B and halve the concentration of C

Doubling the concentrantion doubles  the pressure which we can deduce from pV = n RT = c RT ( c= n/V ), and likewise halving the concentration halves the pressure. Thus, since we are doubling the concentration of B and halving that of C, there is no net change in the new equilibrium:

Q =  pB´x pC´  = ( 2 pB ) x ( 1/2 pC ) = K

e.  double the concentrations of both products

We learned that doubling the concentration doubles the pressure so:

Q =  pB´x pC´   = ( 2 pB ) x ( 2 pC ) = 4 Kp

Therefore, the system wil reduce by a half the pressures of B and C by producing more solid A to reach equilibrium again shifting it to the left.

f.  double the concentrations of both products and then quadruple the container volume

We saw from part e that doubling the concentration doubles the pressures, but here afterward we are going to quadruple the container volume thus reducing the pressure by a fourth:

Q =  pB´x pC´   = ( 2 pB/ 4 ) x (2 pC / 4) = 4/16  Kp = 1/4 Kp

So the system will increase the partial pressures of B and C by a factor of four, that is it will double the partial pressures of B and C shifting the equilibrium to the right.

If you do not see it think that double the concentration and then quadrupling the volume is the same net effect as halving the volume.

3 0
3 years ago
Other questions:
  • What is the nuclear binding energy of an atom that has a mass defect of 1.643 x 10-28kg?
    14·2 answers
  • Write the net ionic equation for this reaction occurring in water: ammonium fluoride and magnesium chloride are mixed to form ma
    10·1 answer
  • WHERE DOES THE REST OF THE ENERGY (90%) GO?​
    9·1 answer
  • A 4.5x10 to the negative 3 M solution of a weak acid is 6.3% dissociated at 25%C. In a 4.5x10 to the negative 4 M solution, the
    13·1 answer
  • Which is a base unit used in the metric system? quarts liters pints degrees Fahrenheit
    9·2 answers
  • Why does spring tides occur
    9·1 answer
  • Lead II chloride + sodium nitrite is what?​
    15·1 answer
  • Why does nitrogen have the lowest volume in the atmosphere on average?
    10·1 answer
  • TRUE OR FALSE? Alloys are used more than pure metals because they are generally softer and less likely to react with air or wate
    12·2 answers
  • HELP ME ILL MARK BRAINLIESTTTT PLSS ASAP
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!