Answer:
Given: The following system:
4x + y − 2z=18 ......[1]
2x-3y+3z = 21 ......[2]
x-3y=6 ......[3]
we can write equation [3] as;
3y = x-6 ......[4]
Multiply by 3 in equation [1] to both sides of an equation we get,
or
12x+3y-6z=54 ......[5]
Substituting the equation [4] in [2] and [5] we get;
2x-(x-6)+3z=21 or
2x-x+6+3z=21
Simplify:
x+3z=15 .....[6] [combine like terms]
12x+x-6-6z =54
Simplify:
13x-6z=60 ......[7] [Combine like terms]
On Solving equation [6] and [7] simultaneously,
x+3z=15
13x-6z=60
we get the value of x
i.e, x=6
Substitute the value of x in equation x+3z=15 we get
6+3z=15 or
3z=9
Simplify:
z=3
Also, substitute the value of x=6 in equation [3] we get the value of y;
x-3y=6
6-3y=6 or
-3y = 0
Simplify:
y = 0
Therefore, the solution to the system of three linear equation is, (6, 0 , 3)
Answer/Step-by-step explanation:
Given:
m<3 = 54°
m<2 = right angle
a. m<1 + m<2 + m<3 = 180° (angles in a straight line)
m<1 + 90° + 54° = 180° (substitution)
m<1 + 144° = 180°
m<1 = 180° - 144°
m<1 = 36°
b. m<2 = 90° (right angle)
c. m<4 = m<1 (vertical angles)
m<4 = 36° (substitution)
d. m<5 = m<2 (vertical angles)
m<5 = 90°
e. m<6 = m<3 (vertical angles)
m<6 = 54°
f. m<7 + m<6 = 180° (same side interior angles)
m<7 + 54° = 180° (substitution)
m<7 = 180 - 54
m<7 = 126°
g. m<8 = m<6 (alternate interior angles are congruent)
m<8 = 54°
h. m<9 = m<7 (vertical angles)
m<9 = 126°
i. m<10 = m<8 (vertical angles)
m<10 = 54°
j. m<11 = m<4 (alternate interior angles are congruent)
m<11 = 36° (substitution)
k. m<12 + m<11 = 180° (linear pair)
m<12 + 36° = 180° (substitution)
m<12 = 180° - 36°
m<12 = 144°
l. m<13 = m<11 (vertical angles)
m<13 = 36°
m. m<14 = m<12 (vertical angles)
m<14 = 144° (substitution)
∠1 and ∠2 are supplementary // given∠3 and ∠4 are supplementary // given∠1 ≅ ∠3 // given m∠1 + m∠2 = 180° // definition of supplementary anglesm∠3 + m∠4 = 180° // definition of supplementary angles m∠1 + m∠2 = m∠3 + m∠4 // transitive property of equality m∠1 = m∠3 // definition of congruent angles m∠1 + m∠2 = m∠1 + m∠4 // substitution property of equality (replaced m∠3 with m∠1) m∠2 = m∠4 // subtraction property of equality (subtracted m∠1 from both sides) ∠2 ≅ ∠4 // definition of congruent angles
<span>18x+9xy is correct all Roots are to x=0 and y=-2
(9x⋅2)+(9x⋅y) is correct </span>Roots are to x=0 and y=-2