Answer:
Explanation:
The model written correctly is:
This is a mathematical question, instead of a chemistry question, and you should use calculus to find the nitrogen level that gives the best yield, since this is an optimization problem.
The best yield is the maximum yield, and the maximum, provided that it exists, is found using the first derivative and making it equal to zero: Y' = 0
To find Y' you must use the quotient rule.

Now make Y' = 0
- The denominator is never equal to zero, because it is always positive and greater than 9.
- Make the numerator equal to zero:
9k - kN² = 0
- Since k is a positve constant, it is not equal to zero, and the other factor, 9 - N², must be equal to zero:
9 - N² = 0 ⇒ (3 - N) (3 + N) = 0
⇒ 3 - N = 0 or 3 + N = 0 ⇒ N = 3 or N = -3.
Since N is nitrogen level, it cannot be negative and the only valid answer is N = 3.
You can prove that it is a maximum (instead of a minimum) finding the second derivative or testing some points around 3 (e.g. 2.5 and 3.5).
Answer:
All carbon atoms can be connected to a continuous chain in the straight-chain alkane. In alkanes of a branched-chain, all carbon atoms cannot be connected to a continuous chain as a branch or side chain is part of the carbon chain.
Explanation:
Radio waves, Micro waves, infrared, visible light, ultra violet, x-rays, and Gamma rays.
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>