Answer:
P = 359.8 atm
Explanation:
The van der Waals' equation relates the properties of a gas, introducing constants "a" and "b" in order to consider gases as real gases. The equation is:

where,
P: pressure
a: correction factor for intermolecular forces
V: volume
b: correction factor for molecules' volume
n: moles
R: ideal gas constant
T: absolute temperature

The answer is B, luminous. Because of that fact that absorbing is taking light and Illuminated means having light because of a different light source. Luminous means bright and having lots of light. Hope this helps :)
Answer:
what is the question please?
The question is missing, however, I guess the problem is asking for the value of the force acting between the two balls.
The Coulomb force between the two balls is:

where

is the Coulomb's constant,

is the intensity of the two charges, and

is the distance between them.
Substituting these numbers into the equation, we get

The force is repulsive, because the charges have same sign and so they repel each other.
Answer:
Explanation:
given
initial velocity u = 4.45m/s
Height = 0.6m
g = 9.8m/s²
Required
final velocity v
Using the equation of motion;
v² = u²-2gH (upward motion of the fish makes g to be negative)
v² = 4.45²-2(9.8)(0.6)
v² = 19.8025-11.76
v² = 8.0425
v = 2.84 m/s
Hence the speed of the fish as it passes a point 0.6 m above the water is 2.84m/s
To get the time, we will use the formula
v = u - gt
2.84 = 4.45 - 9.8t
2.84-4.45 = -9.8t
-1.61 = -9.8t
t = 1.61/9.8
t = 0.164secs
Hence the time taken is 0.164secs