Answer:
A) Gravitational Force is greater in S.
B) Time taken to fall a given distance in air will be greater for F.
C) Both will take same time to fall in a vacuum.
D) Total force is greater in S.
Explanation:
(a) In this case, the gravitational force of S will be greater, because Newton's Second Law states that - F = ma, or weight =mg. g is constant. And mass of the solid metal is heavier.
(b) In this case, the time it will take for F to fall from a given distance in air will be greater than that of S, since the air resistance is not negligible (as in the case of S).
(c) In this, It will take same time for S and F because in a vacuum, there are no air particles, so there is no air resistance and gravity is the only force acting and so objects fall at the same rate in a vacuum.
(d) The total force will be greater in S than F because Force=ma and S is of heavier mass than F.
V=at and a=F/m
140/.070 = 2000m/s^2
2000*.020 = 40m/s
The ball’s velocity increased by 40m/s.
If the energy transfer diagram created by Ray has error in it, it can be corrected by applying the principle of energy conservation.
<h3>What is energy diagram?</h3>
Energy diagram is sketch of the energy flow process or energy transfer or energy conversion process.
The law of energy conservation states that, energy can neither be created nor destroyed but can be converted from one form to another.
Thus, if the energy transfer diagram created by Ray has error in it, it can be corrected by applying the principle of energy conservation.
Learn more about energy conservation here: brainly.com/question/24772394
#SPJ1
Answer:
17.565 kgm/s
Explanation:
Momentum = mass × velocity
I = mv..................... Equation 1
But we can calculate the value of v using the equation of motion under gravity.
v² = u²+2gs............. Equation 2
Where u = initial velocity, s = maximum heigth, g = acceleration due to gravity.
Given: u = 0 m/s (at the maximum heigth), s = 7.0 m.
Constant: g = 9.8 m/s²
Substitute these values into equation 2
v² = 0²+ 2×7×9.8
v² = 137.2
v = √137.2
v = 11.71 m/s.
Also given: m = 1.50 kg
substitute these values into equation 1
Therefore,
I = 1.5×11.71
I = 17.565 kgm/s
B. <span>10,824 feet
is the right answer
tan 26 = 6000/x
x = 10824 ft</span>