Answer:

Explanation:
The energy of the emitted photon is inversely proportional to its wavelength, according to the equation:

where
is the Planck's constant
is the speed of light
is the wavelength
This means that the biggest energy is released when the wavelength is the shortest. For a photon of visible light, the shortest wavelength is

So, substituting into the equation, we find the corresponding energy:

Answer:
momentum of iron ball is greater than wooden ball
Explanation:
when metal ball (iron ball) and wooden drop are drop from same elevation and reaching the ground after same time. at this position the iron ball has greater momentum than wooden ball
we know that momentum is defined as
P=Mv
and we know also that mass of iron ball is greater than mass of wooden ball and they reached on ground at same time and same distance it mean also velocity will be same for both ball. therefore from above relation we have
Miron*V > Mwood*V i.e.
momentum of iron ball is greater than wooden ball
Answer:
(a) Jx = -1.14Ns, Jy = 110×3×10-³ = 0.330Ns (b) V = (0m/s)ı^−(1.79m/s)ȷ^
Explanation:
Given
W = 0.56N = mg
m = 0.56/g = 0.56/9.8 = 0.057kg
t = 3.00ms = 3.00×10-³s
Impulse is a vector quantity so we would treat it as such
We have been given the force and velocity in their component forms so to get the impulse from these quantities, we pick the respective component for the quantity we want to calculate and do the necessary calculation. The masses are scalar quantities and so do not affect the signs used in the calculations whether positive or negative. So we have that
u = (20.0m/s)ı^−(4.0m/s)ȷ^
ux = 20m/s
uy = – 4.0m/s
F = – (380N)ı^+(110N)ȷ^
Fx = –380N
Fy = 110N
J = impulse = force × time = F×t
So Jx = Fx ×t
Jy = Fy×t
Jx = –380×3×10-³ = -1.14Ns
Jy = 110×3×10-³ = 0.330Ns
Impulse also equals the change in momentum of the body. So
J = m(v–u)
J/m = v – u
V= J/m + u
Vx = Jx/m + ux
Vx = –1.14/0.057 + 20
Vx = -20 + 20 = 0m/s
Vx = 0m/s
Vy= Jy/m + uy
Vy= 0.33/0.057 + (-4.0)
Vy= 5.79 + (-4.0) = 1.79m/s
V = (0m/s)ı^−(1.79m/s)ȷ^
The only colours that are in the spectrum are red, orange, yellow, green, blue, indigo and violet. hope this helps!
Answer:
98.33 %
Explanation:
On an elliptical orbit, angular momentum will be conserved .
Angular momentum = I ω = mvR
So mv₁R₁ = mv₂R₂
= v₁R₁ = v₂R₂
where v₁ is velocity and R₁ radius in low orbit (perigee)and v₂ and R₂ is velocity and radius in high orbit ( apogee ).
Here R₁ = Radius of the earth , R₂ is distance between moon and earth.
R₁ / R₂ = 1/60
v₁ /v₂ = R₂ / R₁ = 60
v₂ / v₁ = 1 / 60
1 - (v₂ / v₁ ) = 1 -( 1 / 60)
(v₁ -v₂)/v₁ = ( 60-1 )/60
(v₁ -v₂)/v₁ x 100 = 5900/60 = 98.33 %