Acceleration = force/mass
1/4
s=ut+1/2at^2
0*4+1/2*1/4*4^2
1/2*1/4*16
1/2*4
=2
Answer:
The velocity of other mass is 3.60 m/s.
Explanation:
Given that,
Mass of first block = 8 kg
mass of second block = 4.3 kg
Speed = 6.7 m/s
We need to calculate the speed of first mass
Using conservation of momentum

where, m₁ =mass of first block
m₂ =mass of second block
m₁ =mass of first block
v₂ =speed of second block
Put the value into the formula



Negative sign represent the opposite direction of initial value.
Hence, The velocity of other mass is 3.60 m/s.
Answer:
OK draw a diagram - you have the force from (b) acting sown the slope and a component of the weight. Use F=ma to get the deceleration and then use SUVAT. Post your working if this doesn't work.
friction = 900N
braking = 3100N
total = 4000N
w= mxg = 1000*9.81= 9810N
total = 9810 + 4000 = 13810N
force/mass = 13810/1000 = 13.81ms^-2
then using v^2 = u^2 + 2as, i get s as 14 but it is incorrect
Explanation:
Answer: counterclockwise
Explanation:
As the area of the loop decreases steadily, the flux through the loop also decreases. By Lenz’s law, any induced current will tend to oppose the decrease. Using Flemming right hand rule (Fleming's right-hand rule which shows the direction of induced current) we know that magnetic field inside the loop due to a counterclockwise current comes out of the plane. Therefore a counterclockwise current will create a stronger magnetic field inside
the loop, tending to increase the flux.
When a wire loop is moved in the direction of the current or a wire loop is being pulled through a uniform magnetic field there would be no induced current ( current loop is said to be zero)