Given:
The initial velocity of the object, v=30 m/s
a_t=0
a_c≠0
The time period is Δt.
To find:
The right conclusion among the given choices.
Explanation:
a_t represents the tangential accleration on the object and a_c represents the centripetal acceleration on the object.
The centripetal acceleration is the acceleration that keeps the object in its circular path. The centripetal force only changes the direction of the velocity and not the magnitude.
Thus the magnitude of the velocity of the object remains the same after a time interval of Δt. But the direction of the velocity of the object will be changed and will be unknown after Δt seconds.
Final answer:
Thus the object will be traveling at 30 m/s in some unknown direction.
Therefore, the correct answer is option a.
Answer:
a) I = 3.63 W / m²
, b) I = 0.750 W / m²
Explanation:
The intensity of a sound wave is given by the relation
I = P / A = ½ ρ v (2π f
)²
I = (½ ρ v 4π² s_{max}²) f²
a) with the initial condition let's call the intensity Io
cte = (½ ρ v 4π² s_{max}²)
I₀ = cte s² f₀²
I₀ = cte 10 6
If frequency is increase f = 2.20 10³ Hz
I = constant (2.20 10³) 2
I = cte 4.84 10⁶
let's find the relationship of the two quantities
I / Io = 4.84
I = 4.84 Io
I = 4.84 0.750
I = 3.63 W / m²
b) in this case the frequency is reduced to f = 0.250 10³ Hz and the displacement s = 4 s or
I = cte (f s)²
I = constant (0.250 10³ 4)²
I = cte 1 10⁶
the relationship
I / Io = 1
I = Io
I = 0.750 W / m²
Which element is magnetic?
Answer
cobalt
Answer:
It says energy can't be created or destroyed
Explanation:
Answer:
The volume at the surface is 10.97 L.
Explanation:
Given that,
Volume = 5.5 L
Height = 10 m
Density of sea water= 1025 kg/m³
We need to calculate the pressure at that point
Using formula of pressure

Put the value into the formula


We need to calculate the volume at the surface
Using equation of ideal gas

So, for both condition

Put the value into the formula


Hence, The volume at the surface is 10.97 L.