Answer:
Vectors are used in science to describe anything that has both a direction and a magnitude. They are usually drawn as pointed arrows, the length of which represents the vector's magnitude.
Explanation:
They are usually drawn as pointed arrows, the length of which represents
Answer:
Approximately
, assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let
and
denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question,
and
.
Let
denote the distance between these two point charges. In this question,
.
Let
denote the Coulomb constant. In standard units,
.
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.
Refraction is a phenomenon which results when a ray of light enters from one medium to another medium. When a ray of light enters from denser medium to rarer medium, it bends away from the normal. The laws of refraction are: The incident ray, the refracted ray and the normal all lie in the same plane.
Answer:
Photosynthetic organisms
Explanation:
The electromagnetic energy of sunlight is converted to chemical energy in the chlorophyll-containing cells of photosynthetic organisms. In eukaryotic cells these reactions occur in the organelle known as the chloroplast
Hope this helps! :)
Answer:
Explanation:
Let the radius of track required be r.
Centripetal force will be provided by frictional force which will be equal to
m v²/ r
Frictional force = mg x μ
So
m v² /r = mg μ
r = v² / μ g =
v = 29 km /h = 8.05 m /s
r =( 8.05 x 8.05 ) /( .32 x 9.8 ) = 20.66 m