Answer:
Δd = 7.22 10⁻² m
Explanation:
For this exercise we must use the dispersion relationship of a diffraction grating
d sin θ = m λ
let's use trigonometry
tan θ = y / L
how the angles are small
tant θ = sinθ /cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
let's use direct ruler rule to find the distance between two slits
If there are 500 lines in 1 me, what distance is there between two lines
d = 2/500
d = 0.004 me = 4 10⁻⁶ m
diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1
let's calculate for each wavelength
λ = 656 nm = 656 10⁻⁹ m
d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶
d₁ = 2.788 10⁻¹ m
λ = 486 nm = 486 10⁻⁹ m
d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶
d₂ = 2.066 10⁻¹ m
the distance between the two lines is
Δd = d1 -d2
Δd = (2,788 - 2,066) 10⁻¹
Δd = 7.22 10⁻² m
Answer:
Light comes in different colors like radio, ultra violet, gamma-ray, etc, and they are invisible to the bare eye
Explanation:
Increased lamp voltage is achieved by turning the light intensity dial.
To enlarge the diameter of the hole and let more light through the slide, the iris diaphragm was modified.
Condenser: Position it higher and closer to the slide's bottom to better direct light to the centre of the slide.
<h3>
How do you adjust the light level on a microscope?</h3>
Utilize the brightness adjustment knob to change the brightness. Turn the brightness control knob while looking through the eyepieces to make sure there is no glare in the field of view.
Use a daylight balancing filter if your compound microscope has a certain sort of illumination. It typically rests directly on top of the luminator or in a filter holder above the light. This filter is blue.
The daylight balancing filter will correct the colour temperature and produce a higher-quality image if your microscope is lighted by tungsten or halogen (and a better colour image). This blue filter is not necessary if your microscope is an LED.
To learn more about light level on a microscope, visit:
brainly.com/question/14727797
#SPJ4
The things that determine the amount of an object's gravitational potential energy are ...
-- mass of the object
-- gravitational acceleration in the place where the object is
-- height of the object above the ground or the floor
A). <em>a slice of bread; </em> No. It's still a slice of bread even if it's on the ground.
B. <em>A compressed spring; </em> No. It's still a compressed spring even if it's on the ground.
C. <em>An apple on a tree</em>; <em>Yes !</em> It can't be an apple on a tree if it's on the ground.
D. <em>A stretched bow string</em>; <em>No.</em> It's still a stretched bowstring even if it's on the ground.
D.
Always use the right tool to get accurate measurements