The mass of Jupiter is 1.9 x 1027 kg.
Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
Explanation: Velocity is the displacement of an object during a specific unit of time. Two measurements are needed to determine velocity. Displacement and time. Displacement includes a direction, so velocity also includes a direction. Speed with direction. Velocity can be an average velocity or an instantaneous velocity. Units for velocity are the same as for speed: m/s, km/h, and mph. Delta x(Δx) is the symbol used for displacement. Delta (Δ) means to "change in." Δx means to "change in position." Δx is calculated by final position minus initial position. Velocity formula: → v=Δx/t as a fraction.
v=Δx/t

<em><u>Final answer is 30.</u></em>
Hope this helps!
Thanks!
Have a great day!
-Charlie
Answer:
The strong person should carry the ladder at the front end and the weak person should carry it at the back end.
Explanation:
this is because in such a case the strong person has to pull the ladder whereas the weak person at the back end have to push the ladder. In such case it is easier to push because the weak person can use the force of gravity of his own body for pushing the ladde.
However in case of pulling the ladder one has to overcome his own gravity to pull the heavy object
<u> </u>
<h2><em>I Hope it help you </em></h2>
Answer:
The relative uncertainty gives the uncertainty as a percentage of the original value. Work this out with: Relative uncertainty = (absolute uncertainty ÷ best estimate) × 100%. So in the example above: Relative uncertainty = (0.2 cm ÷ 3.4 cm) × 100% = 5.9%. The value can therefore be quoted as 3.4 cm ± 5.9%.
Explanation:
hope it helps :)