Observe that the given vector field is a gradient field:
Let
, so that



Integrating the first equation with respect to
, we get

Differentiating this with respect to
gives

Now differentiating
with respect to
gives

Putting everything together, we find a scalar potential function whose gradient is
,

It follows that the curl of
is 0 (i.e. the zero vector).
Answer:
F = [M] × [L1 T-2] = M1 L1 T-2.
Explanation:
Therefore, Force is dimensionally represented as M1 L1 T-2.
Answer:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong):</em>
a) a×b = 34.27k
b) a·b = 128.43
c) (a + b)·b = 305.17
d) The component of a along the direction of b = 9.66
Explanation:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong)</em> we can proceed as follows:
a) The vectorial product, a×b is:

b) The escalar product a·b is:

c) <u>Asumming (a</u><u> </u><u>+ b)·b</u> <em>instead a+b·b</em> we have:
![(a + b)\cdot b = [(8.6 + 9.3)i + (5.1 + 9.5)j]\cdot (9.3i + 9.5j) = (17.9i + 14.6j)\cdot (9.3i + 9.5j) = 305.17](https://tex.z-dn.net/?f=%28a%20%2B%20b%29%5Ccdot%20b%20%3D%20%5B%288.6%20%2B%209.3%29i%20%2B%20%285.1%20%2B%209.5%29j%5D%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20%2817.9i%20%2B%2014.6j%29%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20305.17)
d) The component of a along the direction of b is:

I hope it helps you!
Since both hv same mass and elsstic collision, so their velocity will exchange. Bob A will stop and bob B will move with speed of A just before the collision.
Speed will be = squreroot ( 2*g*L)
L is length of pendulum