Hello there.
<span>If we increase the force applied to an object and all other factors remain the same that amount of work will
</span><span>C. Increase
</span>
Answer:
I think is 2.
Explanation:
(The entire range of wavelengths or frequencies of electromagnetic radiation extending from gamma rays to the longest radio waves and including visible light)
Claim 2: Molecules speed up when they get energy from other molecules and slow down when they give energy to other molecules.
Energy can’t be destroyed (stated in claim 1) so claim 2 is more than likely to be correct
Answer:
Explanation:
Threshold frequency = 4.17 x 10¹⁴ Hz .
minimum energy required = hν where h is plank's constant and ν is frequency .
E = 6.6 x 10⁻³⁴ x 4.17 x 10¹⁴
= 27.52 x 10⁻²⁰ J .
wavelength of radiation falling = 245 x 10⁻⁹ m
Energy of this radiation = hc / λ
c is velocity of light and λ is wavelength of radiation .
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 245 x 10⁻⁹
= .08081 x 10⁻¹⁷ J
= 80.81 x 10⁻²⁰ J
kinetic energy of electrons ejected = energy of falling radiation - threshold energy
= 80.81 x 10⁻²⁰ - 27.52 x 10⁻²⁰
= 53.29 x 10⁻²⁰ J .
Answer:
V = I×R
where -
V = potential difference across
I = current flowing in the circuit
R = Equivalent Resistance in the circuit