Chemical reaction: NaHCO₃ + HCl → NaCl + CO₂ + HCl.
Reaction occurs between sodium bicarbonate (sodium hydrogen carbonate) and hydrochloric acid. For example, hydrogen carbonate<span> mixed with water is used like </span>antacid (neutralizes <span>stomach acidity), contverts </span>stomach acid (hydrochloric acid) to carbon dioxide.
The equation in this problem is: 2Pb(NO3)2(s) --> 2PbO(s)
+ 4NO2(g) + O2(g)
And the question is what the pressure in the cylinder is
after decomposition and cooling to a temperature of 300 K.
Solution:
Moles of Pb (NO3)2 = 3.31/331 = 0.0100
2 moles of Pb (NO3)2 will decay to mold 4 moles of NO2 and 1 mole of O2. So
0.0100 moles of Pb (NO3)2 will form 0.02 moles of NO2 and 0.00500 moles of
O2
Then use the formula: PV = nRT.
P = (0.02 + 0.005) * 0.082 * 300 / 1.62
= 0.380 atm
<span> </span>
Answer:
Bohr's model
Explanation:
Rutherford's experimental evidence best supports the Bohr's model. Recall that in the Bohr's model, the Rutherford model was regarded as a fundamental stepping stone.
Experimental evidence from the Bohr's model shows that the atom is not a sphere of positive charges in which negative charges were embedded. It would have been impossible for Neils Bohr to build the quantum theory from such a model.
Hence, the nuclear theory of Rutherford provided a fundamental stepping stone and experimental backup for the Bohr's model of the atom.
All other models mentioned in task 1 (Dalton, Thompson and Bohr) all mention the fact that the atom is made of particles. Thompson effectively described the particles as negative and positive in nature. Bohr took the idea further by proposing that the negative particles (electrons) were actually found in energy levels that are quantized.
I would say G sorry if it’s not right
Answer:
1) wavelength
2) trough
3) amplitude
4) crest
Explanation:
Hope this helps!