1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
7

2. Which of these values is the GREATEST? 63/7 450% 8.99 -22

Mathematics
1 answer:
kogti [31]3 years ago
5 0
I think it’s 450% I’m in 7th so what do I know ‍♀️
You might be interested in
two 3 in. by 5 in. index cards are placed side by side so that their edges are touching. which term best represents where the ca
11Alexandr11 [23.1K]
<span>Which term best represents where the cards touch?
A.Angle
B.Line segment
C.Point
D.Plane

The best term is B. LINE SEGMENT.

A line segment is part of a line that is bounded by 2 distinct end points. In this case, the end points are the edges of the index cards.</span>
7 0
2 years ago
Convert x2 + y2 = 16 to polar form.
Dafna1 [17]
The Correct Answer is Option B 

r = 4

Ex. CONVERT 2 + 2 = 4 x 4 = 16 
6 0
3 years ago
Study the graph below. Describe the functional relationship between Quantity A and Quantity B. What happens as Quantity A increa
Alex
There is an inverse corollation between the values of A and B. Specifically, a 3 unit change increase in A results in a 4 unit decrease in B
4 0
3 years ago
ramone has 5 difficult questions left to answer on a multiple choice test. Each question has 3 choices. For the first 2 of these
olchik [2.2K]
1. a b c
2. a b c
3. a b c
4. a b c
5. a b c

then she eliminated 1 choice in 1 and 2, say as follows

1.    b c
2. a b 
3. a b c
4. a b c
5. a b c

Probability of answering correctly the first 2, and at least 2 or the remaining 3 is 
P(answering 1,2 and exactly 2 of 3.4.or 5.)+P(answering 1,2 and also 3,4,5 )

P(answering 1,2 and exactly 2 of 3.4.or 5.)=
P(1,2,3,4 correct, 5 wrong)+P(1,2,3,5 correct, 4 wrong)+P(1,2,4,5 correct, 3 wrong)
also P(1,2,3,4 c, 5w)=P(1,2,3,5 c 4w)=P(1,2,4,5 c 3w )
so  
P(answering 1,2 and exactly 2 of 3.4.or 5.)=3*P(1,2,3,4)=3*1/2*1/2*1/3*1/3*2/3=1/4*2/9=2/36=1/18

note: P(1 correct)=1/2
         P(2 correct)=1/2
         P(3 correct)=1/3
         P(4 correct)=1/3
         P(5 wrong) = 2/3

P(answering 1,2 and also 3,4,5 )=1/2*1/2*1/3*1/3*1/3=1/108

Ans: P= 1/18+1/108=(6+1)/108=7/108
5 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • How to convert the equation<br><img src="https://tex.z-dn.net/?f=y%20%3D%20%20%5Cfrac%7Bq%7D%7B5%20%7B%7D%5E%7Bx%7D%20%7D%20" id
    8·1 answer
  • Combine value to find 615 minus 342
    12·1 answer
  • Write 615,600 in scientific notation
    15·1 answer
  • there are five boys and seven girls in a swimming class. a team of four will be selected at random from this class. what is the
    7·1 answer
  • The length of a rectangle is 10 yd less than three times the width, and the area of the rectangle is 77 yd^2. Find the dimension
    12·1 answer
  • Help me answer this question 4 (1-20)​
    14·1 answer
  • 4^3/2-2^3*6+8(-1)^10
    7·1 answer
  • Pls help I’ll brainlest I just need help with part 4
    7·2 answers
  • A soda can is made out of aluminum. It is 12 centimeters tall, and has a diameter of 7.5 centimeters. How many cubic units of so
    9·1 answer
  • Evaluate the expression for the given value of x.<br>4x+9 for x =9​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!