Answer:
B : is independent of the natural frequency of the oscillator
Explanation:
You can apply any force you like to a natural oscillator. It is independent of the natural frequency of the oscillator.
The result you get will depend on how the frequency of the applied force and the natural frequency relate to each other. It will also depend on the robustness of the oscillator with respect to the applied force.
Clearly, if the force is small enough, it will have no effect on the oscillator. If it is large enough, it will overpower any motion the oscillator may attempt. For forces in the intermediate range, there will be some mix of natural oscillation and forced behavior. One may modulate the other, for example.
Crime scenes contain physical evidence that is pertinent to a criminal investigation. This evidence is collected by crime scene investigators (CSIs) and law enforcement. The location of a crime scene can be the place where the crime took place or can be any area that contains evidence from the crime itself.
Answer:
The jet will fly 2400 km.
Explanation:
Given the velocity of the jet flying toward the east is 1,500 kmph toward the east.
We need to find the distance covered in 1.6 hours.
In our problem we are given speed and time, we can easily determine the distance using the following formula.


So, the supersonic jet will travel 2400 km in 1.6 hours toward the east from its starting point.
In the direction the force is directed towards. If the boy kicks the ball to the right, the ball will roll to the right.
Answer:
The diameter of the camera aperture must be greater than or equal to 1.49m
Explanation:
Let the distance separating two objects, x = 6.0 cm = 0.06 m
The distance between the observer and the two objects, d = 160 km = 160000 m
Let ∅ = minimum angular separation between the two objects that the satellite can resolve
tan( ∅) = x/d
Since there is minimum angular separation, tan( ∅) ≈∅
∅ = x/d
∅ = 0.06/160000
∅ = 3.75 * 10⁻⁷rad
For the satellite to be able to resolve the objects,
D ≥ 1.22λ/∅
λ = 560 nm = 560 * 10⁻⁹
D ≥ 1.22 * (560 * 10⁻⁹)/(3.75 * 10⁻⁷)
D ≥ 149.33 * 10⁻² m
D ≥ 1.49 m