I suppose this is a true or false question and that sentence is true.
Answer:

Explanation:
We know that for circular motion the centripetal acceleration
is:

where v is the speed and r is the radius.
The centripetal acceleration for the astronaut must be the gravitational acceleration due to the gravity, as there are no other force. So
.
The radius of the orbit must be the radius of the Moon, plus the 270 km above the surface




We can obtain the speed as:






And this is the orbital speed.
The formula for kinetic energy = ½m·v<span>2
1/2 * 55 kg x 5,87 m/s ^2 = 27.5 x </span>34.4569 = <span>947.56475 Joule </span>≈ 948 J
Explanation:
Given that,
Initial speed of the bag, u = 7.3 m/s
Height above ground, s = 24 m
We need to find the speed of the bag just before it reaches the ground. It can be calculated using third equation of motion as :


v = 22.88 m/s
So, the speed of the bag just before it reaches the ground is 22.38 m/s. Hence, this is the required solution.
In general, how do you find the average velocity of any object falling in a vacuum? (Assume you know the final velocity.) Multiply the final velocity by final time. 3. Calculate : Distance, average velocity, and time are related by the equation, d = v • t A