All four values are in 3 sig. fig.
<h3>Explanation</h3>
(a)
.
(b)
Sum of the final charge on the two capacitors should be the same as the sum of the initial charge. Voltage of the two capacitors should be the same. That is:
;
;
.
(c)
.
.
(d)
Initial energy of the system, which is the same as the initial energy in the
capacitor:
.
Change in energy:
.
To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is

Here
v = Wave speed
T = Tension
= Linear mass density
From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension

Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion
The factor that the wave speed change is 2.
The fundamental frequency of this open-open pipe is 8.82 Hz
The quantity of waves that pass a set location in a predetermined period of time is known as frequency. Frequency is the number of full cycles per second in the alternating current direction for an oscillating or fluctuating current. The hertz, also known as Hz, is the accepted unit of frequency.
The temporal rate of change observed in oscillatory and periodic phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light, is specified by the frequency, an essential parameter in science and engineering.
Assume vs = 344 m/s
f1 = vs/2L
= 344 m/s/ 2∙64 ft/(3.281 ft/m)
= 8.82 Hz
To know more about Frequency refer:
brainly.com/question/14131991
#SPJ4
Answer:
2.59 T
Explanation:
Parameters given:
Current flowing through the wire, I = 29 A
Angle between the magnetic field and wire, θ = 90°
Magnetic force, F = 2.25 N
Length of wire, L = 3 cm = 0.03 m
The magnetic force, F, is related to the magnetic field, B, by the equation below:
F = I * L * B * sinθ
Inputting the given parameters:
2.25 = 29 * 0.03 * B * sin90
2.25 = 0.87 * B
=> B = 2.25/0.87
B = 2.59 T
The magnetic field strength between the poles is 2.59 T