The frequency of the human ear canal is 2.92 kHz.
Explanation:
As the ear canal is like a tube with open at one end, the wavelength of sound passing through this tube will propagate 4 times its length of the tube. So wavelength of the sound wave will be equal to four times the length of the tube. Then the frequency can be easily determined by finding the ratio of velocity of sound to wavelength. As the velocity of sound is given as 339 m/s, then the wavelength of the sound wave propagating through the ear canal is
Wavelength=4*Length of the ear canal
As length of the ear canal is given as 2.9 cm, it should be converted into meter as follows:

Then the frequency is determined as
f=c/λ=339/0.116=2922 Hz=2.92 kHz.
So, the frequency of the human ear canal is 2.92 kHz.
Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
Answer:
Steel is almost 2.9 times heavier the aluminium.