1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
4 years ago
8

Find the source area of the space figure represented by the net

Mathematics
1 answer:
sergejj [24]4 years ago
6 0

I assume you meant "surface area" :)

Looking at the net, it looks like if you folded it back together it would form to become a triangular prism.

To calculate the surface area of a triangular prism, you would use the formula: A = bh + 2ls + lb, where b is the base of the triangular faces, h is the height of the prism, l is the length of the prism, and s is the side length of the prism.

I attached a picture to help you see what these labels are.

Looking at the diagram you've provided, we can assume that b = 7 cm, h = 4 cm, l = 8 cm, and s = 5 cm. Substitute these into the formula.

A = bh + 2ls + lb ==> A = (7)(4) + 2(8)(5) + (8)(7)

Multiply from left to right.

28 + 80 + 56

Add.

164

The surface area of this triangular prism is A) 164 cm^2.

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
HELP PLEASE I NEED TO KNOW --&gt; SUPER EASY QUESTION
aev [14]

Answer:

As functions of a true variable, exponential functions are uniquely characterized by the very fact that the expansion rate of such a function (that is, its derivative) is directly proportional to the value of the function.

Step-by-step explanation:

Have a nice day hope this helps.

5 0
3 years ago
I need help ? which linear function is represented by the graph?​
PilotLPTM [1.2K]
<h3>Answer: f(x) = (-1/2)x+1, choice B</h3>

=================================================

Explanation:

The diagonal line passes through 1 on the vertical y axis. So the y intercept is b = 1. This means the location of the y intercept is (0,1).

Start at (0,1) and move down 1 and to the right 2 to arrive at (2,0). This is another point on the diagonal line. The motion of "down 1 and right 2" is effectively the slope

slope = rise/run = -1/2

rise = -1, run = 2

The rise being negative means we have gone downhill as we move to the right.

With m = -1/2 as the slope and b = 1 as the y intercept, we go from y = mx+b to y = (-1/2)x+1

The last thing to do is replace y with f(x) to get f(x) = (-1/2)x+1 as the final answer.

4 0
3 years ago
Read 2 more answers
Simplify each expression.
Vlad [161]

Answer:

The answer is:

32x+12y

Step-by-step explanation:

Because 4 times 8 =32 and 4 times 3 =12

5 0
3 years ago
Tiana takes 3 hours to drive to the coast without stopping how many minutes will it take her to reach the coast if she stops to
Maru [420]
<span>200 minutes. 60*3 + 20 = 200</span>
7 0
4 years ago
Read 2 more answers
Other questions:
  • 48 divided by four fifths
    14·1 answer
  • The decimal form 1.46 becomes _ expressed as a percent 14.6 .0146 146%1.46%
    10·1 answer
  • 20 POINTS ! ! ! !<br><br>write a matrix to represent the following system
    5·1 answer
  • Multiply and simplify
    14·1 answer
  • Y-1=-3/7(x-(-3)) what is the equation
    11·1 answer
  • Kedar is comparing the costs of phone plans. For phone plan A, the cost is $15.00 to connect and then $0.02 per minute. For phon
    15·2 answers
  • Convert: (a) 250 liters to kiloliters, (b) 4.5 liters to milliliters.​
    14·1 answer
  • Four friends were born in consecutive years. The sum of their ages is 62.
    6·1 answer
  • Divide (2x^2+x-45) by (x+5)​
    7·2 answers
  • The Denver Post reported that, on average, a large shopping center had an incident of shoplifting caught by security 1.4 times e
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!