The coefficient of static friction between the chair and the floor is 0.67
Explanation:
Given:
Weight of the chair = 25kg
Force = 165 N (F_applied)
Force = 127 N (F_max)
To find: Coefficient of static friction
The “coefficient of static friction” between a chair and the floor is defined as the ration of maximum force to the normal force acting on the chair
μ_s=
The F_n is equal to the weight multiplied by its gravity
∴
=mg
Thus the coefficient of static friction changes as
μ_s=
μ_{s} = 
= 0.67
SI unit is an international system of measurements that are used universally in technical and scientific research to avoid the confusion with the units. Having a standard unit system is important because it helps the entire world to understand the measurements in one set of unit system.
Answer:
P.E = 0.068 J = 68 mJ
Explanation:
First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = -9.8 m/s² (negative sign due to upward motion)
h = height attained by the ball toy = ?
Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)
Vi = Initial Velocity = 3 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²
h = (9 m²/s²)/(19.6 m/s²)
h = 0.46 m
Now, the gravitational potential energy of ball at its peak is given by the following formula:
P.E = mgh
P.E = (0.015 kg)(9.8 m/s²)(0.46 m)
<u>P.E = 0.068 J = 68 mJ</u>
If Juan used a Celsius thermometer, it would tell him the Celsius temperature.
If he added 273 to that number, he'd have the "absolute" or Kelvin temperature.
Using the formula: E = kQ / d² where E is the electric field, Q is the test charge in coulomb, and d is the distance.
E = kQ / d²
k = 9 x 10^9 N-m²/C²
Q = 6.4 x 10^-5 C
d = 2.5 x 10^-2 m
Substituting the given values to the equation, we have:
E = (9 x 10^9)(6.4 x 10^-5) / (2.5 x 10^-2) ²
Electric field at the test charge is 921600000 N/C