Answer:
A molecule is a group of two or more atoms held together by chemical bonds. A compound is a substance which is formed by two or more different types of elements which are united chemically in a fixed proportion. All molecules are not compounds.
Good luck !
<span>C7H8
First, lookup the atomic weight of all involved elements
Atomic weight of carbon = 12.0107
Atomic weight of hydrogen = 1.00794
Atomic weight of oxygen = 15.999
Then calculate the molar masses of CO2 and H2O
Molar mass CO2 = 12.0107 + 2 * 15.999 = 44.0087 g/mol
Molar mass H2O = 2 * 1.00794 + 15.999 = 18.01488 g/mol
Now calculate the number of moles of each product obtained
Note: Not interested in the absolute number of moles, just the relative ratios. So not going to get pedantic about the masses involved being mg and converting them to grams. As long as I'm using the same magnitude units in the same places for the calculations, I'm OK.
moles CO2 = 3.52 / 44.0087 = 0.079984
moles H2O = 0.822 / 18.01488 = 0.045629
Since each CO2 molecule has 1 carbon atom, I can use the same number for the relative moles of carbon. However, since each H2O molecule has 2 hydrogen atoms, I need to double that number to get the relative number of moles for hydrogen.
moles C = 0.079984
moles H = 0.045629 * 2 = 0.091258
So we have a ratio of 0.079984 : 0.091258 for carbon and hydrogen. We need to convert that to a ratio of small integers. First divide both numbers by 0.079984 (selected since it's the smallest), getting
1: 1.140953
The 1 for carbon looks good. But the 1.140953 for hydrogen isn't close to an integer. So let's multiply the ratio by 1, 2, 3, 4, ..., etc and see what each new ratio looks like (Effectively seeing what 1, 2, 3, 4, etc carbons look like)
1 ( 1 : 1.140953) = 1 : 1.140953
2 ( 1 : 1.140953) = 2 : 2.281906
3 ( 1 : 1.140953) = 3 : 3.422859
4 ( 1 : 1.140953) = 4 : 4.563812
5 ( 1 : 1.140953) = 5 : 5.704765
6 ( 1 : 1.140953) = 6 : 6.845718
7 ( 1 : 1.140953) = 7 : 7.986671
8 ( 1 : 1.140953) = 8 : 9.127624
That 7.986671 in row 7 looks extremely close to 8. I doubt I'd get much closer unless I go to extremely high integers. So it looks like the empirical formula for toluene is C7H8</span>
Answer:
Spectroscopy
Explanation:
They can determine its composition based on these wavelengths. The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy
Ionic compounds are formed between oppositely charged ions.
A binary ionic compound is composed of ions of two different elements - one of which is a positive ion(metal), and the other is negative ion (nonmetal).
To write the empirical formula of binary ionic compound we must remember that one ion should be positive and other ion should be negative, then only the correct formula should be written. To write the empirical formula the charges of opposite ions should be criss-crossed.
First empirical formula of binary ionic compound is written between
First Formula would be 
Second empirical formula is between 
Second Formula would be 
Note : When the subscript are same they get cancel out, so
would be written as 
Third empirical formula is between 
Third Formula would be :
Forth empirical formula is between 
Forth Formula would be :
or 
Note- The subscript will be simplified and the formula will be written as
.
The empirical formula of four binary ionic compounds are : 
Answer:
please give a photo I can't now to help u