Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.
Answer:
IR spectroscopy can be used to identify chemical structures are present in compounds.
Explanation:
Infrared spectroscopy is a technique in organic chemistry that can be use use to identify chemical structures present in compounds because it is base on the ability of different functional groups to adsorb infrared light.
This work by shinning the infrared lights into the organic compounds to be identified, some of the frequencies of the infrared lights are adsorbed by the compounds and its identify groups of atoms and molecules in the compound.