Answer:
the dog barked is the answer
Answer:
The required volume is 1.6 x 10³mL.
Explanation:
When we want to prepare a dilute solution from a concentrated one, we can use the dilution rule to find out the required volume to dilute. This rule states:
C₁ . V₁ = C₂ . V₂
where,
C₁ and V₁ are the concentration and volume of the concentrated solution
C₂ and V₂ are the concentration and volume of the dilute solution
In this case, we want to find out V₁:
C₁ . V₁ = C₂ . V₂

Answer: After a few aspirin tablets have been swallowed, the concentration of acetylsalicylic acid in the stomach is 0.20 M. Calculate the percent ionization of the acid under these conditions. Therefore, the percent ionization is - X 100% = 3.8%.
<span>Answer: option B. 3.07 g
Explanation:
1) given reaction:
S(s) + O₂ (g) → SO(g)
2) Balanced chemical equation:
</span><span>2S(s) + O₂ (g) → 2SO(g)
3) Theoretical mole ratios:
2 mol S : 1 mol O₂ : 2 mol SO
3) number of moles of 4.5 liter SO₂ at</span><span> 300°C and 101 kPa
use the ideal gas equation:
pV = nRT
with V = 4.5 liter
p = 101 kPa
T = 300 + 273.15 K = 573.15 K
R = 8.314 liter×kPa / (mol×K)
=> n = pV / (RT) =
n = [101 kPa × 4.5 liter] / [8.314 (liter×kPa) / (mol×K) × 573.15 K ]
n = 0.0954 mol SO
4) proportion with the theoretical ratio S / SO
2 mol S x
-------------- = ----------------------
2 mol SO 0.0954 mol SO
=> x = 0.0954 mol S.
5) Convert mol of S to grams by using atomic mass of S = 32.065 g/mol
mass = number of moles × atomic mass
mass = 0.0954 mol × 32.065 g/mol = 3.059 g of S
6) Therefore the answer is the option B. 3.07 g
</span>
Answer:
Subtract the mass of the CuSO4⋅ 5H2O from the mass of CuSO4 is the right one