<u>Answer:</u> Maximum work that can be obtained by given amount of methanol is -343kJ.
<u>Explanation:</u>
For the given chemical reaction:

By Stoichiometry of the reaction:
2 moles of methanol does a work of 1372 kJ.
So, 0.5 moles of methanol will do a work of = 
Hence, maximum work that can be obtained by given amount of methanol is -343kJ.
Answer:
6
Explanation:
The number of hydrogen atoms in the given compound is 6 atoms.
Given compound is:
3H₂CO₃
An atom is the smallest indivisible particles of an element.
In the compound;
3H₂CO₃
Elements Number of atoms
H 3(2) = 6
C 3(1) = 3
O 3(3) = 9
The number of hydrogen atoms in the compound is 6
The net amount of energy produced can be obtained from a table of enthalpy change of formation, available online.
The enthalpy change of formation indicate how much energy the 1 mole of the product (H2O) has relative to the elemental reactants (H2 and O2). In other words, the "lost" energy equals the heat/energy released.
For water (H2O), this value is -285.8 if the final product is a liquid under standard conditions, and -241.82 if the product is in gas form which contains some energy that could be further released. This means that if the final product (H2O) is in liquid form, energy released is 285.8 kJ/mol.
Since water is in liquid form under standard conditions, the first value (285.8 kJ/mol) is generally appropriate.
Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
<span>The particles are far apart from each other.</span>