The pair of elements that will form an ionic bond are Strontium and Chlorine.
When a system is in dynamic equilibrium, the forward reaction rate and the backward reaction rate are equal or occurs at the same rate. Therefore, the third option above is the most accurate one. Hope this answers the question. Have a nice day.
For your experiment, you would need to see decide what your hypothesis is before you design the experiment. If you want to see if the volume of gas changes depending on the container it's in, then you need to set it up depending on what you want to do with the volume.
The manipulated variable would be whatever you change, so if you switch container sizes, that would be the manipulated variable and the responding variable would be the volume of the gas.
I hope this helps!
Answer:
0.01932 L
Explanation:
First we <u>convert 105 mM to M</u>:
Next we <u>convert 552 mL to L</u>:
Then we use the following equation:
Where:
We<u> input the given data</u>:
- 3 M * V₁ = 0.105 M * 0.552 L
And <u>solve for V₁</u>:
The correct answer is 3) 2CO2(g) ⇄ 2CO(g) + O2(g)
this is the correct one because it is a decomposition reaction and all the number of atoms is equal on both sides.
there are 2 C atoms on both sides.
and 4 O atoms on both sides.
and 1) the atoms numbers are equal on both sides but not correct as it not a
correct number as it has 1/2 O2.
and 2) CO2(g) ⇆ CO(g) + O2
the number of O atoms is not equal on both sides of the equation.
we have 2 O atoms on the left side and 3 O atoms on the right side.
so, this not a balanced equation.
4) also not correct 2CO(g) + O2 ⇆ 2CO2
as it is not a decomposition reaction and the 2CO & O2 are as reactants not products.
so the correct answer is 3) 2CO2(g) ⇆ 2CO(g) + O2(g)