Answer:
8.3 kJ
Explanation:
In this problem we have to consider that both water and the calorimeter absorb the heat of combustion, so we will calculate them:
q for water:
q H₂O = m x c x ΔT where m: mass of water = 944 mL x 1 g/mL = 944 g
c: specific heat of water = 4.186 J/gºC
ΔT : change in temperature = 2.06 ºC
so solving for q :
q H₂O = 944 g x 4.186 J/gºC x 2.06 ºC = 8,140 J
For calorimeter
q calorimeter = C x ΔT where C: heat capacity of calorimeter = 69.6 ºC
ΔT : change in temperature = 2.06 ºC
q calorimeter = 69.60J x 2.06 ºC = 143.4 J
Total heat released = 8,140 J + 143.4 J = 8,2836 J
Converting into kilojoules by dividing by 1000 we will have answered the question:
8,2836 J x 1 kJ/J = 8.3 kJ
Answer:
there are no examples but 1 example is H2O which has 2 elements combining a compound.
Explanation:
Answer:
{1s^2 2s^2 2p^6} 3s^2 3p^4
{Ne}3s^2 3p^4
Explanation:
i didnt understand the rest of that but this is the e- configuration on top and the bottom is noble gas configuration
I know what you're asking but I don't think the question is stated properly. Technically, an atom will not join with an "oxide" ion; i.e., the oxide ion is an atom of oxygen to which two electrons have been added. An oxide ion will add to 2 K ions or 1 Ca ion. The K ion has lost just one electron so it takes two of them to equal the 2- charge on the oxide ion whereas the Ca ion has lost two electrons and it takes only one of them to equal the charge on the oxide ion.