1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
4 years ago
9

What volume of concentrated (10.2 M) HCl would be required to prepare 1.11 x 104 mL of 1.5 M HC1? Enter your answer in scientifi

c notation. Be sure to answer all parts. x 10 (select) L
Chemistry
1 answer:
Tomtit [17]4 years ago
3 0

Answer:

The required volume is 1.6 x 10³mL.

Explanation:

When we want to prepare a dilute solution from a concentrated one, we can use the dilution rule to find out the required volume to dilute. This rule states:

C₁ . V₁ = C₂ . V₂

where,

C₁ and V₁ are the concentration and volume of the concentrated solution

C₂ and V₂ are the concentration and volume of the dilute solution

In this case, we want to find out V₁:

C₁ . V₁ = C₂ . V₂

V_{1} = \frac{C_{2}.V_{2}}{C_{1}} = \frac{1.5M \times1.11.10^{4}mL }{10.2M} =1.6\times10^{3} mL

You might be interested in
A reaction A(aq)+B(aq)↽−−⇀C(aq) has a standard free‑energy change of −4.20 kJ/mol at 25 °C. What are the concentrations of A, B,
Dafna1 [17]

Answer : The concentration of A,B\text{ and }C at equilibrium are 0.132 M, 0.232 M  and 0.168 M  respectively.

Explanation :

The given chemical reaction is,

A(aq)+B(aq)\rightleftharpoons C(aq)

First we have to calculate the equilibrium constant for the reaction.

The relation between the equilibrium constant and standard free‑energy is:

\Delta G^o=-RT \ln k

where,

\Delta G^o = standard free‑energy change = -4.20 kJ/mole

R = universal gas constant = 8.314 J/mole.K

k = equilibrium constant = ?

T = temperature = 25^oC=273+25=298K

Now put all the given values in the above relation, we get:

-4.20kJ/mole=-(8.314J/mole.K)\times (298K) \ln k

k=5.45

Now we have to calculate the concentrations of A, B, and C at equilibrium.

The given equilibrium reaction is,

                          A(aq)+B(aq)\rightleftharpoons C(aq)

Initially               0.30      0.40         0  

At equilibrium  (0.30-x) (0.40-x)     x

The expression of equilibrium constant will be,

k=\frac{[C]}{[A][B]}

5.45=\frac{x}{(0.30-x)\times (0.40-x)}

By solving the term x, we get

x=0.168\text{ and }0.716

From the values of 'x' we conclude that, x = 0.716 can not more than initial concentration. So, the value of 'x' which is equal to 0.716 is not consider.

The value of x will be, 0.168 M

The concentration of A at equilibrium = (0.30-x) = 0.30 - 0.168 = 0.132 M

The concentration of B at equilibrium = (0.40-x) = 0.40 - 0.168 = 0.232 M

The concentration of C at equilibrium = x = 0.168 M

3 0
4 years ago
Ammonium nitrate, a common fertilizer, is used as an explosive in fireworks and by terrorists. It was the material used in the t
Tamiku [17]

Answer:

The explosive decomposition of 98.4 kg of ammonium nitrate produces 58498.8 L of nitrogen, 29249.4 L of oxygen and 116997.6 L of water vapor.

Explanation:

To find how many liters of gas are formed from the explosive decomposition of ammonium nitrate it is necessary to follow these steps (check the attachment for better understanding):

1st) Balance the equation:

Write the decomposition equation and then find the correct coefficients to make sure that it goes according to the "Law of conservation of mass" (the mass of the reactants side must be equal to the mass of the products side). So, 2 moles of ammonium nitrate produces 2 moles of nitrogen, 1 mole of oxygen and 4 moles of water vapor.

2nd) Find the Ammonium nitrate molar mass:

The ammonium nitrate mass it is calculated by adding de molar mass of each atom that forms the ammonium nitrate molecule. You can find the elements molar mass in the Periodic Table.

In this example I decided to round the number to simplify tha calculus, for example: the oxygen molar mass in the periodic table is 15.9994 but I use 16. You can use the complete number if you want.

By doing this, the ammonium nitrate molar mass is 80 g/mol.

The statement says that there is 98.4 kg of ammonium nitrate. In ordder to use the same units in all the calculus sometimes it is usefull to convert the kg to g, so it is the same as 98400g. You can do it the other way around if you prefer (g to kg).

3rd) Find the number of moles of each gases and aqua vapor formed:

It is important to know the amount of each compound formed by the decomposition reaction, that's why we need to pay attention to the coefficients of the balanced reaction.

The amount of each compound is easily found by using the "rule of three".

To use the rule of three we need to think using the balanced reaction so:

If 160g (2 moles) of ammonium nitrate produces 2 moles of nitrogen gas, the 98400g that we have of ammonium nitrate will produce an X amount of nitrogen gas. With this information we multiply 98400g by 2 moles and then we divide the result by 160g. The final result it is 1230 moles of nitrogen.

In the same way we use the rule of three to calculate the number of moles of oxygen and water.  

4th) Find the liters (volume) of each gas and aqua vapor formed:

Finally, to find the liters from the number of moles, it is necessary to apply the "Ideal gases law", that relates the pressure (atm), volume (L), moles number and temperature (Kelvin) with the R gas constant in the formula:

PxV = nxRxT

It is important to use the correct units because the R gas constant is equal to 0.082 atm.L/mol.K.

As we need to calculate the liters (volume) we pass the pressure dividing to the other side and then we just have to replace the information:

V = (nxRxT)/P

As you can see in the attachment, doing this last step for each compound, we can find the liters produced of them.

8 0
3 years ago
What is the concentration of chloride ions in a solution formed by mixing 150. mL of a 1.50 M NaCl solution with 250. mL of a 0.
joja [24]
Here, we apply a mass balance:
Moles of chloride ions in final solution = sum of moles of chloride ions in added solutions

We must also not that each mole of sodium chloride will release one mole of chloride ions, while each mole of magnesium chloride will release two moles of chloride ions.
Moles = concentration * volume
Moles in final solution = moles in NaCl solution + moles in MgCl₂ solution
C * (150 + 250) = 1.5 * 150 + 2 * 0.75 * 250
C = 1.5 M

The final concentration is 1.5 M
4 0
3 years ago
PLZ HELP!! WILL GIVE BRAINLIST!!
Klio2033 [76]
His kinetic energy is converted into potential energy.
7 0
3 years ago
Read 2 more answers
Calculate ΔSrxn∘ for the reaction
Yanka [14]

The entropy of the reaction can be calculated alike the enthalpy of the reaction which is equal to the difference between the summation of entropies of the products multiplied by their corresponding stoich coeff. and the summation of the entropies of the reactants multiplied by their corresponding stoich coeff. In this case, the answer is -146.8 J / mol K
7 0
4 years ago
Read 2 more answers
Other questions:
  • A green pigment that captures light energy for photosynthesis?
    15·1 answer
  • In order for nuclear fusion to occur, the core of the sun must be hot enough to overcome the _________ of the nuclei. select one
    6·1 answer
  • If an aqueous solution has a ph of 5.57 what is the concentration of hydroxide ion ([oh-]) in the solution?
    15·1 answer
  • What mass of sodium bicarbonate would be needed to neutralize the spill if a bottle containing 1.75 L of concentrated HCl droppe
    5·1 answer
  • The solution
    5·1 answer
  • Functions of the skin other than thermoregulation​
    8·1 answer
  • 500 ml equals to how many pints?
    14·1 answer
  • an atom has 7 protons 8 neutrons 8 electrons . what are the mass charge and type of element of this atom
    5·1 answer
  • What does a particular point on a line of a phase diagram represent ?
    5·2 answers
  • Fran finds a dark-colored rock that she identifies as basalt. Which property gives the rock its dark color?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!