The coefficient of determination can be found using the following formula:
![r^2=\mleft(\frac{n(\sum ^{}_{}xy)-(\sum ^{}_{}x)(\sum ^{}_{}y)}{\sqrt[]{(n\sum ^{}_{}x^2-(\sum ^{}_{}x)^2)(n\sum ^{}_{}y^2-(\sum ^{}_{}y)^2}^{}}\mright)^2](https://tex.z-dn.net/?f=r%5E2%3D%5Cmleft%28%5Cfrac%7Bn%28%5Csum%20%5E%7B%7D_%7B%7Dxy%29-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%7D%7B%5Csqrt%5B%5D%7B%28n%5Csum%20%5E%7B%7D_%7B%7Dx%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dx%29%5E2%29%28n%5Csum%20%5E%7B%7D_%7B%7Dy%5E2-%28%5Csum%20%5E%7B%7D_%7B%7Dy%29%5E2%7D%5E%7B%7D%7D%5Cmright%29%5E2)
Using a Statistics calculator or an online tool to work with the data we were given, we get
So the best aproximation of r² is 0.861
It is commutative property
The vertex to this question is (6, -31)
Answer:
Length is 182 cm and width is 158 cm.
Step-by-step explanation:
Given:
Perimeter of rectangle table = 680 cm.
Let the width of the table be
.
Now according to given length of the table is 24 cm more than the race the width
hence length =
.
But perimeter of rectangle = 2(length+width)
Substituting the values we get;

Hence width = 158 cm
Now, length = 24 cm + width = 24 cm + 158 cm = 182 cm
Hence the dimension of table are 182 cm and 158 cm.
Answer:

Step-by-step explanation:
![( \frac{625}{16} {)}^{ \frac{1}{4} } \\ \sqrt[4]{ \frac{625}{16} } = \frac{ \sqrt[4]{625} }{ \sqrt[4]{16} } \\ \frac{ \sqrt[4]{ {5}^{4} } }{ \sqrt[4]{16} } = \frac{ \sqrt[4]{ {5}^{4} } }{ \sqrt[4]{ {2}^{4} } } = \frac{5}{2}](https://tex.z-dn.net/?f=%28%20%5Cfrac%7B625%7D%7B16%7D%20%20%7B%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%20%5C%5C%20%20%5Csqrt%5B4%5D%7B%20%5Cfrac%7B625%7D%7B16%7D%20%7D%20%20%3D%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B625%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B16%7D%20%7D%20%20%20%5C%5C%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B%20%7B5%7D%5E%7B4%7D%20%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B16%7D%20%7D%20%20%3D%20%20%5Cfrac%7B%20%5Csqrt%5B4%5D%7B%20%7B5%7D%5E%7B4%7D%20%7D%20%7D%7B%20%5Csqrt%5B4%5D%7B%20%7B2%7D%5E%7B4%7D%20%7D%20%7D%20%20%3D%20%20%5Cfrac%7B5%7D%7B2%7D%20)
