m = mass of the circular hoop
r = radius of the hoop
I = moment of inertia of the hoop
moment of inertia of the hoop about the center of hoop is given as
I = m r²
k = distance of the point of suspension from center of mass = r
using parallel axis theorem
I' = moment of inertia of hoop about the point of suspension
I' = I + m k²
I' = m r² + m k²
I' = m r² + m r²
I' = 2 m r²
Time period of oscillation for the hoop is given as
T = 2π sqrt(I'/mgk)
T = 2π sqrt(2 m r²/(mgr))
T = 2π sqrt(2 r/g)
since 2r = diameter = d
T = 2π sqrt(d/g)
Answer:
D
Explanation:
There is no friction to stop you from moving BC you are in space, however you have a larger mass than the ball, so it takes more force to get you up to the same speed as the baseball. You will move in the opposite direction of the ball because you exerted force on the ball in one direction and therefore yourself in the opposing direction.
Answer:
0.68 seconds
Explanation:
Data provided in the question:
Mass of the box = 50 kg
Speed of the box = 1.0 m/s
Coefficient of friction, μ = 0.15
Now,
Force applied = μmg
Here,
g is the acceleration due to gravity = 9.8 m/s²
Thus,
F = 0.15 × 50 × 9.8
= 73.5 N
Also,
Force = Mass × Acceleration
thus,
73.5 N = 50 × a
or
a = 1.47 m/s²
After doubling the speed
Final speed = 2 × Initial speed
= 2 × 1 m/s
= 2 m/s
Also,
Acceleration = [change in speed] ÷ Time
or
1.47 = [ 2 - 1 ] ÷ Time
or
Time = 1 ÷ 1.47
or
Time = 0.68 seconds
Pressure and volume of a gas are inversely related. As one goes up, the other goes down, and vice-versa.
It would be on the top of the HR diagram, specifically, the top right.