1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena-2011 [213]
4 years ago
14

PLEASE HURRY WILL MARK BRAINLIEST IF CORRECT

Physics
1 answer:
Readme [11.4K]4 years ago
6 0

The answer to the question is 1.48 x 10^-11 J

You might be interested in
Which of the following indicates a heat transfer?
lesya [120]

Answer:

TEMPERATURE CHANGES

Explanation:

WELL ITS BASIC. WHEN TEMPERATURE CHANGES. IT MEANS THAT HEAT IS BEING TRANSFERRED AS I HEARD THAT COLD CANNOT BE TRANSFERRED

3 0
3 years ago
Echnician a says that to prevent injuries in an auto accident, all steering columns have a break-off steering wheel. technician
Oliga [24]
<span>Technician a says that to prevent injuries in an auto accident, all steering columns have a break-off steering wheel. technician b says that to prevent injuries in an accident, all steering columns are now fitted with a flexible rubber tube. Both technicians are correct.   The </span>vehicle manufacturers use break away steering column mounting brackets to protect the driver in an accident.  The <span>vehicle manufacturers are required to use collapsible shafts in the steering column. </span>
4 0
3 years ago
The length and mass of the arm are Larm = X1 = 50 cm and Marm = 0.3 kg, X2 = 15 cm, and the mass of the object is MObject = 0.25
max2010maxim [7]

Answer: 0.5N

Explanation: if the system is at equilibrium, sum of the torque will be equal to zero.

But if they are not in equilibrium.

U will find the difference in the two torque

find the attached file for solution

3 0
3 years ago
An ideally efficient heat pump delivers 1000 J of heat to room air at 300 K. If it extracted heat from 260 K outdoor air, how mu
choli [55]

Answer:

Wnet, in, = 133.33J

Explanation:

Given that

Pump heat QH = 1000J

Warm temperature TH= 300K

Cold temperature TL= 260K

Since the heat pump is completely reversible, the combination of coefficient of performance expression is given as,

From first law of thermodynamics,

COP(HP, rev) = 1/(1-TL/TH)

COP(HP, rev) = 1/(1-260/300)

COP(HP, rev) = 1/(1-0.867)

COP(HP, rev) = 1/0.133

COP(HP, rev) = 7.5

The power required to drive the the heat pump is given as

Wnet, in= QH/COP(HP, rev)

Wnet, in = 1000/7.5

Wnet, in = 133.333J. QED

So the 133.33J was the amount heat that was originally work consumed in the transfer.

Extra....

According to the first law, the rate at which heat is removed from the low temperature reservoir is given as

QL=QH-Wnet, in

QL=1000-133.333

QL=866.67J

5 0
3 years ago
At t=0 a grinding wheel has an angular velocity of 25.0 rad/s. It has a constant angular acceleration of 26.0 rad/s2 until a cir
Agata [3.3K]

Answer:

a) The total angle of the grinding wheel is 569.88 radians, b) The grinding wheel stop at t = 12.354 seconds, c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

Explanation:

Since the grinding wheel accelerates and decelerates at constant rate, motion can be represented by the following kinematic equations:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

\omega = \omega_{o} + \alpha \cdot t

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

Where:

\theta_{o}, \theta - Initial and final angular position, measured in radians.

\omega_{o}, \omega - Initial and final angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

Likewise, the grinding wheel experiments two different regimes:

1) The grinding wheel accelerates during 2.40 seconds.

2) The grinding wheel decelerates until rest is reached.

a) The change in angular position during the Acceleration Stage can be obtained of the following expression:

\theta - \theta_{o} = \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

If \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\theta-\theta_{o} = \left(25\,\frac{rad}{s} \right)\cdot (2.40\,s) + \frac{1}{2}\cdot \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)^{2}

\theta-\theta_{o} = 134.88\,rad

The final angular angular speed can be found by the equation:

\omega = \omega_{o} + \alpha \cdot t

If  \omega_{o} = 25\,\frac{rad}{s}, t = 2.40\,s and \alpha = 26\,\frac{rad}{s^{2}}, then:

\omega = 25\,\frac{rad}{s} + \left(26\,\frac{rad}{s^{2}} \right)\cdot (2.40\,s)

\omega = 87.4\,\frac{rad}{s}

The total angle that grinding wheel did from t = 0 s and the time it stopped is:

\Delta \theta = 134.88\,rad + 435\,rad

\Delta \theta = 569.88\,rad

The total angle of the grinding wheel is 569.88 radians.

b) Before finding the instant when the grinding wheel stops, it is needed to find the value of angular deceleration, which can be determined from the following kinematic expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha \cdot (\theta-\theta_{o})

The angular acceleration is now cleared:

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s} and \theta-\theta_{o} = 435\,rad, the angular deceleration is:

\alpha = \frac{ \left(0\,\frac{rad}{s}\right)^{2}-\left(87.4\,\frac{rad}{s} \right)^{2}}{2\cdot \left(435\,rad\right)}

\alpha = -8.780\,\frac{rad}{s^{2}}

Now, the time interval of the Deceleration Phase is obtained from this formula:

\omega = \omega_{o} + \alpha \cdot t

t = \frac{\omega - \omega_{o}}{\alpha}

If \omega_{o} = 87.4\,\frac{rad}{s}, \omega = 0\,\frac{rad}{s}  and \alpha = -8.780\,\frac{rad}{s^{2}}, the time interval is:

t = \frac{0\,\frac{rad}{s} - 87.4\,\frac{rad}{s} }{-8.780\,\frac{rad}{s^{2}} }

t = 9.954\,s

The total time needed for the grinding wheel before stopping is:

t_{T} = 2.40\,s + 9.954\,s

t_{T} = 12.354\,s

The grinding wheel stop at t = 12.354 seconds.

c) The deceleration experimented by the grinding wheel was 8.780 radians per square second.

4 0
3 years ago
Other questions:
  • What has westpac stadium in wellington got to do with the structure of a hydrogen atom
    15·1 answer
  • HELP ME PLZ 30 POINT AND A MARK
    6·1 answer
  • When a sound wave encounters a barrier, what happens?
    8·1 answer
  • A plate moves 200 m in 10,000 years. What is its rat in cm/year
    5·1 answer
  • You observe a light ray move from one piece of glass to another (a different type of glass) and the light ray bends towards the
    12·1 answer
  • A research team developed a robot named Ellie. Ellie ran 1,000 meters for 200 seconds from the research building, rested for 100
    15·1 answer
  • Explain why the wave model of light cannot explain the energy emissions from a blackbody
    15·1 answer
  • What are two roles of bacteria in a nitrogen cycle
    12·2 answers
  • A cyclist turns a corner with a radius of 50m at a speed of 10m/s. What is the cyclist's acceleration?
    5·1 answer
  • Using science terms like force, mass, energy, and inertia, describe how you could get an object to fly a further distance in a c
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!