Answer:
B) Because the Space Station is constantly in free-fall around the Earth.
Explanation:
Anything that is falling experiences an upward force on them. For example when a person is going down in a lift they will experience something that is pushing them upwards. This happens due to the fact that the total acceleration the body is feeling is less than the acceleration due to graviity.
The force on a body which is falling is

Where,
m = Mass of object
g = acceleration due to gravity
a = acceleration the object is experiencing.
a = g. So, the force becomes zero and the object experiences weightlessness.
Hence, the astronauts in the space station experience weightlessness due to fact that the Space Station is constantly in free-fall around the Earth.
<span>¿Qué estás pidiendo en esta situación. Hay entornos de diferencia de los animales. Algunos viven en entornos de tundra, otra veraniega en vivo, ambientes cálidos.</span>
If you mean the SI Unit of GPE, the answer is J for Joules.
if that's not the question being asked, i would need a little more elaboration please :)
Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Answer:
Assuming there are 28 days in each month,
750W = 0.75kW
Cost of electric bill = 0.75 × 8 × 28 × $0.23
= $38.64