1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
2 years ago
5

Which parts of the electric circuit considered as fuse ​

Physics
2 answers:
PilotLPTM [1.2K]2 years ago
7 0

https://youtu.be/f_kgUUaMZlw

Marizza181 [45]2 years ago
3 0

Answer:

Rewirable or Kit – Kat Type Fuses are a type of Low Voltage (LV) Fuses. They are most commonly used in house wiring, small industries and other small current applications. Rewirable Fuses consists of two main parts: a Fuse Base, which contains the in and out terminal, and a Fuse Carrier, which holds the Fuse Element.

You might be interested in
A 0.6 kg ball is initially at rest on a frictionless, horizontal surface. It is struck by a 0.4 kg ball initially moving with a
Dafna1 [17]

Answer:

140

Explanation:

7 0
3 years ago
What happens to a liquid when it loses energy
NeTakaya
It can solidify, it depends on the tempeture.
8 0
3 years ago
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
Which statements are true about galaxies, stars, and the universe? (more than one true answer by the way)
Elina [12.6K]

Answer:

statements <em><u>2, 3, 4, and 7</u></em> are true

Explanation:

8 0
3 years ago
Choose all of the true statements regarding the relationship between voltage, resistance, and current. Current is measured in am
AveGali [126]

-- <u><em>Current is measured in amps.</em></u>  (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)

-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>

-- <u><em>Current is the flow of electrons through a circuit.</em></u>

-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.)  <u><em>It should be V = I · R</em></u> .  

(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.)  <u><em>If the resistance is what you're looking for, then the equation to use is  </em></u><u><em>R = V / I</em></u><u><em> .  </em></u>

<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>

6 0
3 years ago
Read 2 more answers
Other questions:
  • A boulder on the mythical planet mongo drops off a cliff and falls from rest 1000 m in 10.0 s. (A) what's the initial speed of t
    11·1 answer
  • 1.
    11·2 answers
  • Mia walks with a velocity of 1.3 m/s south. She does so while riding on a train that is traveling with a velocity of 4.6 m/s nor
    7·1 answer
  • Which statements about braking a car are true? A)The greater the kinetic energy of a car, the longer it takes for the car to sto
    12·2 answers
  • The SI unit of force is the
    5·1 answer
  • The diameter of a hydrogen atom is 0.000000000106 m. How can this
    15·1 answer
  • In order to be considered an ion, an atom must have a
    12·1 answer
  • Question 25
    13·1 answer
  • an average net force of 31.6 N is used to accelerate a 15.0 kg object uniformly from rest to 10.0 m/s leftward. What is the chan
    7·1 answer
  • 34. (Double points) You help your friend construct a soap box derby car for the All-American Soap Box derby's Stock Division. He
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!