Answer: 200m/min
Explanation:
Divide 10000m by 160m/min, you will get the answer 62.5. You then subtract 12.5 from 62.5 to understand what you will need your answer for the other person’s speed will be. 10000m divided by 50min is 200m/min.
Answer:
-.457 m/s^2
Explanation:
Actual weight = 60 .3 (9.81) = 591.54 N
Accel of lift changes this to 60.3 ( 9.81 - L) where L - accel of lift
60.3 ( 9.81 - L ) = 564
solve for L = .457 m/s^2 DOWNWARD
so L = - .457 m/s^2
Answer:
Therefore,
The magnitude of the force per unit length that one wire exerts on the other is

Explanation:
Given:
Two long, parallel wires separated by a distance,
d = 3.50 cm = 0.035 meter
Currents,

To Find:
Magnitude of the force per unit length that one wire exerts on the other,

Solution:
Magnitude of the force per unit length on each of @ parallel wires seperated by the distance d and carrying currents I₁ and I₂ is given by,

where,

Substituting the values we get


Therefore,
The magnitude of the force per unit length that one wire exerts on the other is

0.345 m.
<h3>Explanation</h3>
The wavelength is the distance that the wave travels in each cycle. The wave travels 345 meters in each second. Let the wavelength of this wave be
. That's the distance the wave travels in one cycle.
The frequency of the sound wave is 1 000 Hz, meaning that there are 1 000 cycles in each second. The wave travels a distance of 1 000 wavelengths in one second. That would be a distance of
.
From the speed of the wave, the wave travels 345 meters in one second. In other words,
.
.
To generalize:
,
where
wavelength of the wave,
the speed of the wave, and
the frequency of the wave.