I would assume air resistance is negligible and so the acceleration of the package would be approximately 9.81 m/s².
Taking downwards as positive, use v²=u²+2as.
v²=(-2)²+2(9.81)(14)
v=16.7 m/s
Answer:
a. Zin = 41.25 - j 16.35 Ω
b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c. Pin = 216 w
d. PL = Pin = 216 w
e. Pg = 478.4 w , Pzg = 262.4 w
Explanation:
a.
Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]
βl = 2π / λ * 0.15 λ = 54 °
Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]
Zin = 41.25 - j 16.35 Ω
b.
I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶
V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)
V₁ = 143. 6 e⁻ ¹¹ ⁴⁶
c.
Pin = ¹/₂ * Re * [V₁ * I₁]
Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)
Pin = 216 w
d.
The power PL and Pin are the same as the line is lossless input to the line ends up in the load so
PL = Pin
PL = 216 w
e.
Pg Generator
Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)
Pg = 478.4 w
Pzg dissipated
Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50
Pzg = 262.4 w
The answer is C.energy because it can make light and heat
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.
Sorry bro I just need points for my calculus exam