1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
2 years ago
10

An electron is ejected from the cathode by a photon with an energy slightly greater than the work function of the cathode. How w

ill the final kinetic energy of the electron upon reaching the anode compare to its initial potential energy immediately after it has been ejected?.
Physics
1 answer:
Ksivusya [100]2 years ago
3 0

It will be approximately equal.

<h3>How will the final kinetic energy change?</h3>

We can infer that all of the energy in the electron is Potential energy (PE) because the energy provided by the photon is hardly enough to outweigh the work function.

It will gain kinetic energy (KE) as it advances in the direction of the anode because it is moving through an electric field. All of the PE will have been transformed to KE by the time it reaches the anode.

According to the question

K = hf - W

W = Work function

The energy of photons is comparable. After conversion, there was only a little amount of KE remaining.

Therefore, PE (W) essentially equals KE (K).

It will about be equal.

Learn more about work function here:

brainly.com/question/19595244

#SPJ4

You might be interested in
A wire with radius 23 cm has a current of 7 A which is distributed uniformly through its cross sectional area. If you were to us
Rina8888 [55]

Answer:

The magnetic induction of the magnetic field is  0.0005293 mT

Explanation:

Data given

I = 7 A = the total current in the wire

r = 23 cm = the radius of the wire = 0.23 meter

r' = 2cm = the measurement point, which should be inside the wire = 0.02 meter

Let's consider the current density is constant in the wire, ⇒  the current enclosed is a function of the enclosed area

I(enclosed) = Jπ r ²

we can  consider the current density  as the total current over the whole area:

I(enclosed) = I / (πr ²)  * πr' ²

I(enclosed) = (I* r'²)/ (r ²)  

with I =  total current in the wire = 7A

With r = the radius of wire = 0.23 meter

with r' = the distance of point from the center of wire  0.02 meter

We plug this into ampere's law:

∮ *B *dl =μ 0  * (I* r'²)/ (r ²)  

with B = Magnetic flux density (in Tesla) or magnetic induction

with dl = an infinitesimal element (a differential) of the curve C

with µ0 = the magnectic constant =  4π*10^−7 H/m

We can simplify this, by using an Amperian loop can write this as:

B *( 2 π r') =  μ 0  * (I* r'²)/ (r ²)  

Because the circumference of a circle is  2 π r , when we integrate over length at a distance  r ′  from the center of wire whose crossection is a circle we get  2 π r ′

When we isolate B, we get:

B = µo *(Ir'/2 π r ²)

B =  4π*10^−7 * ((7*0.02)/2*π*0.23²)

B =5.293 *10 ^-7 T  = 0.0005293 mT

The magnetic induction of the magnetic field is  0.0005293 mT

6 0
3 years ago
A pendulum is made by letting a 4 kg mass swing at the end of a string that has a length of 1.5 meter. The maximum angle that th
olga nikolaevna [1]

Answer:

Approximately 7.8\; \rm J.

Explanation:

The change in the gravitational potential energy of the pendulum is directly related to the change in its height.

Refer to the sketch attached. The pendulum is initially at \rm P_2. Its highest point is at P_1. The length of segment \rm BP_2 gives the change in its height.

The lengths of \rm AP_1 and \rm AP_2 are simply the length of the string, 1.5\; \rm m. To find the length of \rm BP_2, start by calculating the length of \rm AB.

\rm AB forms a leg in the right triangle \rm \triangle AP_1B. Besides, it is adjacent to the 30^\circ angle \rm P_1\hat{A}B. Its length would be:

\rm AB = 1.5 \times \cos(30^\circ) \approx 1.30\; \rm m.

The length of \rm BP_2 would thus be

\rm BP_2 = AP_2 - AB = 1.5 - 1.30 \approx 0.20\; \rm m.

The change in gravitational potential energy can be found with the equation

\Delta \mathrm{GPE} = m \cdot g \cdot \Delta h. In this equation,

  • m is the mass of the object,
  • g \approx 9.81\; \rm N \cdot kg^{-1} near the surface of the earth, and
  • \Delta h is the change in the object's height.

In this case, m = 4\; \rm kg and \Delta h \approx 0.20\; \rm m. Therefore:

\Delta \mathrm{GPE} = 4 \times 9.81 \times 0.20 \approx 7.8\; \rm J.

6 0
3 years ago
Which has more volume feathers or rocks
Nataly_w [17]
Volume doesn't depend on what the substance is, only on how much of it there is.
5 0
3 years ago
A bucket of mass m is hanging from the free end of a rope whose other end is wrapped around a drum (radius R, mass M) that can r
mr Goodwill [35]

Answer:

Explanation:

Let T be the tension .

Applying newton's second law on the downward movement of the bucket

mg - T = ma

On the drum , a torque of TR will be acting which will create an angular acceleration of α in it . If I be the moment of inertia of the drum

TR = Iα

TR = Ia/ R

T =  Ia/ R²

Replacing this value of T in the other equation

mg - T = ma

mg - Ia/ R²  = ma

mg =  Ia/ R² +ma

a ( I/ R² +m)= mg

a = mg / ( I/ R² +m)

mg - T = ma

mg - ma  = T

mg - m x mg / ( I/ R² +m) = T

mg - m²g / ( I/ R² +m ) = T

mg - mg / ( 1 + I / m R² ) = T

b ) T =  Ia/ R²

I = TR² / a

c ) Moment of inertia of hollow cylinder

I = 1/2  M ( R² - R² / 4 )

= 3/4 x 1/2 MR²

= 3/8 MR²

I / R² = 3/8 M

a = mg / ( I/ R² +m)

a = mg / ( 3/8 M + m )

T =  Ia/ R²

= 3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²

= \frac{3mMg}{(3M +8m)}

7 0
3 years ago
Ali mixes 20g of Sodium Chloride in 100g of water at 15 Degree °C. Calculate the mass of the solution
Lera25 [3.4K]

Answer:

The mass of the solution is 120 g.

Explanation:

The mass of the solution is given by:

m_{sol} = m_{1} + m_{2}

Where:

m_{sol}: is the mass of the solution

m_{1}: is the mass of the solvent

m_{2}: is the mass of the solute

In the solution, the solvent is the majority compound (in mass) and the solute is the minority (in mass), so the solvent is the water and the solute is sodium chloride.          

Hence, the mass of the solution is:

m_{sol} = m_{1} + m_{2} = 100 g + 20 g = 120 g  

I hope it helps you!                  

7 0
2 years ago
Other questions:
  • While painting the top of an antenna 275 m in height, a worker accidentally lets a 1.00 L water bottle fall from his lunchbox. T
    8·1 answer
  • A hot-air balloon rises from ground level at a constant velocity of 3.0 m/s. One minute after liftoff, a sandbag is dropped acci
    10·1 answer
  • An aluminium bar 600mm long with diameter 40mm has a hole drilled in the centre of the bar.The hole is 3omm in diameter and is 1
    11·1 answer
  • HEELLP!!!!!!<br> How many paragraphs do you need for a science fair research paper?
    5·1 answer
  • Alpha particles are emitted during the radioactive decay of
    5·1 answer
  • A body of mass 10 kg is pulled by a force 8 N. calculate the acceleration and the the final velocity of the body after 5 second.
    5·1 answer
  • Jupiter, the largest planet in the solar system, has an equatorial radius of about 7.1 x 10^4km (more than 10 times that of Eart
    13·1 answer
  • Choose the correct option
    6·1 answer
  • Dimensional formula of Amplitude ?​
    5·1 answer
  • If a 20 N block experiences a force of kinetic friction of 8.0 N
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!