Answer is: D. 6.02 x 1023.
Because this is Avogadro constant<span> (the number of </span>constituent particles, in this example atoms of gold<span> that are contained in the </span>amount of substance<span> given by one </span>mole). <span>The </span>mole<span> is the </span>unit of measurement<span> for </span>amount of substance, t<span>he mole is an </span>SI base unit<span>, with the unit symbol </span>mol<span>.</span>
Answer:
Explanation:
Ca(In)²⁺ + EDTA → Ca(EDTA)²⁺ + In
We use the volume of EDTA consumed in the titration to <u>calculate the moles of Ca⁺² ions</u>:
- 0.012 L * 0.0600 M *
= 7.20x10⁻⁴ mol Ca⁺²
Now we <u>calculate the molarity</u>:
- 7.20x10⁻⁴ mol Ca⁺² / 0.050 L = 0.0144 M
To calculate in ppm, we <u>use the moles of Ca⁺² and convert to mg of CaCO₃:</u>
- 7.20x10⁻⁴ mol Ca⁺² = 7.20x10⁻⁴ mol CaCO₃
- 7.20x10⁻⁴ mol CaCO₃ * 100g/mol *
= 72 mg CaCO₃
Finally, <u>the concentration in ppm</u> is:
- 72 mg CaCO₃ / 0.050L = 1440 ppm
The 3% mass/volume H₂O₂ means 3 g of H₂O₂ in 100 ml of water.
Now, Molarity (M) = No. of moles of H₂O₂ / Volume of solution in liter
No. of moles of H₂O₂ = Mass / Molar mass = 3 g / 34 g/mol = 0.088 mol
So, molarity = 0.088 × 1000 ml / 100 ml = 0.88 M
In case of 2.25 % H₂O₂,
No of moles = 2.25 g / 34 g/mol = 0.066 mol
Molarity = 0.066 mol / 0.100 L = 0.66 M.
Answer: grams;mass
Explanation: :) I took the test.
Packing
Explanation:
Ionic crystals are brittle due to the tight packing of their crystals. This provides little to no mobility between one another.
- Brittleness implies having little to no elasticity.
- Ionic crystals are held together by strong crystal lattice forces
- These forces prevents crystals from freely rotating and moving space.
- It holds them rigidly and fixed in place.
- Ionic crystals are hard and held electrostatic forces.
learn more:
Ionic compounds brainly.com/question/6071838
#learnwithBrainly