We can find the force by using the following formula;
N = ma + mg
Fa = ma = 76 x 1.2 = 91.2
Fg = mg = 76 x 9.8 = 744.8
N = 91.2 + 744.8 = 836
So, the force is 836 N.
Answer:
g = 0.85 m
Explanation:
g = 
were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x
N
), M is the mass of the earth (5.972 x
kg), and h is the distance of meteoroid to the earth.
h = 3.40 x R
= 3.40 x 6371 km
h = 21661.4 km
= 21661400 m
Thus,
g = 
= 
= 0.84944
g = 0.85 m
The acceleration due to the Earth's gravitation is 0.85 m
.
Answer:
the magnitude of the electric force on the projectile is 0.0335N
Explanation:
time of flight t = 2·V·sinθ/g
= (2 * 6.0m/s * sin35º) / 9.8m/s²
= 0.702 s
The body travels for this much time and cover horizontal displacement x from the point of lunch
So, use kinematic equation for horizontal motion
horizontal displacement
x = Vcosθ*t + ½at²
2.9 m = 6.0m/s * cos35º * 0.702s + ½a * (0.702s)²
a = -2.23 m/s²
This is the horizontal acceleration of the object.
Since the object is subject to only electric force in horizontal direction, this acceleration is due to electric force only
Therefore,the magnitude of the electric force on the projectile will be
F = m*|a|
= 0.015kg * 2.23m/s²
= 0.0335 N
Thus, the magnitude of the electric force on the projectile is 0.0335N
Answer:
Height h = 37.8 m
Explanation:
Given
:
Velocity of car (v) = 98 km / h
Acceleration of gravity = 9.8 m/s²
Computation:
Acceleration of gravity = 9.8 m/s²
Acceleration of gravity = (98)(1,000 m / 3,600 s)
Acceleration of gravity = 27.22 m/s
By using law of conservation of energy
;
(1/2)mv² = mgh
h = v² / 2g
h = 27.22² / 2(9.8)
Height h = 37.8 m
Answer:
Explanation: Please see my attached calculations.