Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
Complete Question
The complete question is shown on the first uploaded image
Answer:
The maximum emf is 
The emf induced at t = 1.00 s is 
The maximum rate of change of magnetic flux is 
Explanation:
From the question we are told that
The number of turns is N = 44 turns
The length of the coil is 
The width of the coil is 
The magnetic field is 
The angular speed is 
Generally the induced emf is mathematically represented as

Where
is the maximum induced emf and this is mathematically represented as

Where
is the magnetic flux
N is the number of turns
A is the area of the coil which is mathematically evaluated as

Substituting values


substituting values into the equation for maximum induced emf


given that the time t = 1.0sec
substituting values into the equation for induced emf 


The maximum induced emf can also be represented mathematically as

Where
is the magnetic flux and
is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

The inflated balloon shrinks when it is placed in an ice bath with no change in atmospheric pressure.
<u>Explanation:</u>
When the inflated balloon is subjected to an ice bath, it shrinks. This is due to the fact that smaller volume gets occupied by the air/gas inside the balloon as the temperature decreases. Hence, causes the balloon walls to collapse.
An ice bath also lowers the overall air temperature of the balloon inside. As the temperature decreases, the air molecules move more slowly and with lower energy. Because of the particle's lower energy, their collisions with the walls are not enough to keep the inflated balloon.
You could use the formula
W=Fd
F(force)=20N
D(distance/displacement) =15m
W=(20N)(15m)
W= 300 J