Answer:
303.29N and 1.44m/s^2
Explanation:
Make sure to label each vector with none, mg, fk, a, FN or T
Given
Mass m = 68.0 kg
Angle θ = 15.0°
g = 9.8m/s^2
Coefficient of static friction μs = 0.50
Coefficient of kinetic friction μk =0.35
Solution
Vertically
N = mg - Fsinθ
Horizontally
Fs = F cos θ
μsN = Fcos θ
μs( mg- Fsinθ) = Fcos θ
μsmg - μsFsinθ = Fcos θ
μsmg = Fcos θ + μsFsinθ
F = μsmg/ cos θ + μs sinθ
F = 0.5×68×9.8/cos 15×0.5×sin15
F = 332.2/0.9659+0.5×0.2588
F =332.2/1.0953
F = 303.29N
Fnet = F - Fk
ma = F - μkN
a = F - μk( mg - Fsinθ)
a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0
303.29-0.35( 666.4 - 303.29*0.2588)/68.0
303.29-0.35(666.4-78.491)/68.0
303.29-0.35(587.90)/68.0
(303.29-205.45)/68.0
97.83/68.0
a = 1.438m/s^2
a = 1.44m/s^2
Answer:
The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
Explanation:
When an atom is bonded with other atoms, a more stable configuration must be reached, which is why the energy of the molecule is less than the energy of the individual atoms, for this to happen in general, electrons are shared or lost and gained in each atom, depending on the electronegative of the same.
If we analyze an atom within the molecule, its last shell is full, in the case of atoms with few electrons in this shell, they are lost and in the case of many electors in this shell, it gains electrons to have eight (8) in total.
When reviewing the different answers, the correct one is:
* The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
Given: distance 1 d₁ = 40 m; distance 2 d₂ = 3.8 m g = -9.8 m/s²
Initial Velocity Vi = 0 Final Velocity of stone 2 is unknown = ?
Total distance dₓ = d₁ - d₂ = 40 m - 3.8 m = 36.2 m
Formula: a = Vf² - Vi²/2d derive for Final Velocity Vf
acceleration is now due to gravity, therefore a = g
Vf = √2gd Vf = √2(9.8 m/s²)(36.2 m)
Vf = 26.64 m/s
Reason: The second stone will still start from rest.
Answer:
D. High frequency and short wavelengths.
Explanation:
If a wave is high in energy it will have a higher frequency.
High frequency = short wavelengths
Answer:
So the answer would be water based on the evidence shown below.
Explanation:
Mercury is a poor conductor of heat but good for electricity, water is a good conductor of heat but a poor conductor of electricity, wood is a poor conductor of heat and electricity, and glass is probably the worst conductor of heat.